[go: up one dir, main page]

login
A047474
Numbers that are congruent to {0, 2, 3} mod 8.
1
0, 2, 3, 8, 10, 11, 16, 18, 19, 24, 26, 27, 32, 34, 35, 40, 42, 43, 48, 50, 51, 56, 58, 59, 64, 66, 67, 72, 74, 75, 80, 82, 83, 88, 90, 91, 96, 98, 99, 104, 106, 107, 112, 114, 115, 120, 122, 123, 128, 130, 131, 136, 138, 139, 144, 146, 147, 152, 154, 155
OFFSET
1,2
FORMULA
G.f.: x^2*(2+x+5*x^2)/((1-x)^2*(1+x+x^2)). - Colin Barker, May 13 2012
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-33-12*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-5, a(3k-1) = 8k-6, a(3k-2) = 8k-8. (End)
MAPLE
A047474:=n->(24*n-33-12*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047474(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 2, 3}, Mod[#, 8]]&] (* Harvey P. Dale, Apr 08 2013 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 2, 3]]; // Wesley Ivan Hurt, Jun 09 2016
(PARI) concat(0, Vec(x^2*(2+x+5*x^2)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Jun 12 2016
CROSSREFS
Sequence in context: A028771 A023709 A317539 * A184797 A005454 A119187
KEYWORD
nonn,easy
STATUS
approved