[go: up one dir, main page]

login
A047462
Numbers that are congruent to {0, 1, 4} mod 8.
3
0, 1, 4, 8, 9, 12, 16, 17, 20, 24, 25, 28, 32, 33, 36, 40, 41, 44, 48, 49, 52, 56, 57, 60, 64, 65, 68, 72, 73, 76, 80, 81, 84, 88, 89, 92, 96, 97, 100, 104, 105, 108, 112, 113, 116, 120, 121, 124, 128, 129, 132, 136, 137, 140, 144, 145, 148, 152, 153, 156
OFFSET
1,3
FORMULA
G.f.: x^2*(1+3*x+4*x^2)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 13 2012]
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-33-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-4, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)
MAPLE
A047462:=n->(24*n-33-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047462(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 1, 4}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 4]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A221865 A004753 A144794 * A020671 A171598 A259241
KEYWORD
nonn,easy
STATUS
approved