[go: up one dir, main page]

login
A047458
Numbers that are congruent to {0, 3, 4} mod 8.
2
0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 28, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 60, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 92, 96, 99, 100, 104, 107, 108, 112, 115, 116, 120, 123, 124, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 156
OFFSET
1,2
FORMULA
G.f.: x^2*(3+x+4*x^2)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 13 2012]
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-4, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
MAPLE
A047458:=n->8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047458(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 3, 4}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 4, 8}, 90] (* Harvey P. Dale, May 31 2017 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 3, 4]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Union of A008586 and A017101. - Michel Marcus, Jun 01 2017
Sequence in context: A222395 A222269 A310011 * A004014 A243177 A113294
KEYWORD
nonn,easy
STATUS
approved