[go: up one dir, main page]

login
A047453
Numbers that are congruent to {0, 1, 2, 3, 4} mod 8.
1
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 88, 89, 90, 91, 92, 96, 97, 98, 99, 100, 104
OFFSET
1,3
FORMULA
G.f.: x^2*(1+x+x^2+x^3+4*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jul 31 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 70 + 3*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) + 3*((n+3) mod 5) - 12*((n+4) mod 5))/25.
a(5k) = 8k-4, a(5k-1) = 8k-5, a(5k-2) = 8k-6, a(5k-3) = 8k-7, a(5k-4) = 8k-8. (End)
MAPLE
A047453:=n->8*floor(n/5)+[(0, 1, 2, 3, 4)][(n mod 5)+1]: seq(A047453(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4}, Mod[#, 8]]&] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 8}, 80] (* Harvey P. Dale, Jul 04 2015 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0..4]]; // Wesley Ivan Hurt, Jul 31 2016
CROSSREFS
Sequence in context: A274927 A066338 A370662 * A037467 A165564 A326704
KEYWORD
nonn,easy
STATUS
approved