[go: up one dir, main page]

login
A047450
Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 8.
3
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88
OFFSET
1,3
FORMULA
G.f.: x^2*(1+x+x^2+2*x^3+x^4+2*x^5) / ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18.
a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-5, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = 3*(sqrt(2)-1)*Pi/16 + (8-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 26 2021
MAPLE
A047450:=n->(24*n-33-3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)+6*sin((1+2*n) *Pi/6))/18: seq(A047450(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [0, 1, 2, 3, 5, 6]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
Sequence in context: A184861 A183572 A285962 * A039073 A026359 A367917
KEYWORD
nonn,easy
STATUS
approved