[go: up one dir, main page]

login
A047446
Numbers that are congruent to {0, 1, 3, 5, 6} mod 8.
1
0, 1, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 41, 43, 45, 46, 48, 49, 51, 53, 54, 56, 57, 59, 61, 62, 64, 65, 67, 69, 70, 72, 73, 75, 77, 78, 80, 81, 83, 85, 86, 88, 89, 91, 93, 94, 96, 97, 99, 101, 102, 104
OFFSET
1,3
FORMULA
a(n) = floor((8n-7)/5). [Gary Detlefs, Mar 07 2010]
G.f.: x^2*(1+2*x+2*x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jul 31 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 45 + 3*(n mod 5) - 2*((n+1) mod 5) - 2*((n+2) mod 5) + 3*((n+3) mod 5) - 2*((n+4) mod 5))/25.
a(5k) = 8k-2, a(5k-1) = 8k-3, a(5k-2) = 8k-5, a(5k-3) = 8k-7, a(5k-4) = 8k-8. (End)
MAPLE
seq(floor((8*n-7)/5), n=1..57); # Gary Detlefs, Mar 07 2010
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 3, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 31 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 3, 5, 6]]; // Wesley Ivan Hurt, Jul 31 2016
CROSSREFS
Sequence in context: A101358 A276210 A186223 * A058065 A218773 A285967
KEYWORD
nonn,easy
STATUS
approved