[go: up one dir, main page]

login
A047438
Numbers that are congruent to {1, 5, 6} mod 8.
2
1, 5, 6, 9, 13, 14, 17, 21, 22, 25, 29, 30, 33, 37, 38, 41, 45, 46, 49, 53, 54, 57, 61, 62, 65, 69, 70, 73, 77, 78, 81, 85, 86, 89, 93, 94, 97, 101, 102, 105, 109, 110, 113, 117, 118, 121, 125, 126, 129, 133, 134, 137, 141, 142, 145, 149, 150, 153, 157, 158
OFFSET
1,2
FORMULA
G.f.: x*(1+4*x+x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-6-3*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-3, a(3k-2) = 8k-7. (End)
MAPLE
A047438:=n->2*(12*n-6-3*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047438(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{1, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [1, 5, 6]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A074185 A242733 A195928 * A341301 A218735 A301658
KEYWORD
nonn,easy
STATUS
approved