[go: up one dir, main page]

login
A047437
Numbers that are congruent to {0, 5, 6} mod 8.
1
0, 5, 6, 8, 13, 14, 16, 21, 22, 24, 29, 30, 32, 37, 38, 40, 45, 46, 48, 53, 54, 56, 61, 62, 64, 69, 70, 72, 77, 78, 80, 85, 86, 88, 93, 94, 96, 101, 102, 104, 109, 110, 112, 117, 118, 120, 125, 126, 128, 133, 134, 136, 141, 142, 144, 149, 150, 152, 157, 158
OFFSET
1,2
FORMULA
G.f.: x^2*(5+x+2*x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-15-3*cos(2*n*Pi/3)-7*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-3, a(3k-2) = 8k-8. (End)
MAPLE
A047437:=n->(24*n-15-3*cos(2*n*Pi/3)-7*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047437(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 5, 6, 8}, 60] (* Harvey P. Dale, Dec 25 2020 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 5, 6]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A105106 A140504 A120131 * A188054 A276374 A184803
KEYWORD
nonn,easy
STATUS
approved