[go: up one dir, main page]

login
A047429
Numbers that are congruent to {4, 5, 6} mod 8.
1
4, 5, 6, 12, 13, 14, 20, 21, 22, 28, 29, 30, 36, 37, 38, 44, 45, 46, 52, 53, 54, 60, 61, 62, 68, 69, 70, 76, 77, 78, 84, 85, 86, 92, 93, 94, 100, 101, 102, 108, 109, 110, 116, 117, 118, 124, 125, 126, 132, 133, 134, 140, 141, 142, 148, 149, 150, 156, 157
OFFSET
1,1
FORMULA
G.f.: x*(4+x+x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 07 2011
a(n) = 5*A002264(n-1)+n+3 = A047475(n)+3. - Bruno Berselli, Dec 07 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-3-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-3, a(3k-2) = 8k-4. (End)
MAPLE
A047429:=n->(24*n-3-15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047429(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[134], MemberQ[{4, 5, 6}, Mod[#, 8]]&] (* Bruno Berselli, Dec 07 2011 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [4..6]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A301423 A072623 A006144 * A301289 A310571 A280382
KEYWORD
nonn,easy
STATUS
approved