[go: up one dir, main page]

login
A047426
Numbers that are congruent to {0, 3, 4, 5, 6} mod 8.
1
0, 3, 4, 5, 6, 8, 11, 12, 13, 14, 16, 19, 20, 21, 22, 24, 27, 28, 29, 30, 32, 35, 36, 37, 38, 40, 43, 44, 45, 46, 48, 51, 52, 53, 54, 56, 59, 60, 61, 62, 64, 67, 68, 69, 70, 72, 75, 76, 77, 78, 80, 83, 84, 85, 86, 88, 91, 92, 93, 94, 96, 99, 100, 101, 102
OFFSET
1,2
FORMULA
G.f.: x^2*(3+x+x^2+x^3+2*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Aug 01 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.
a(n) = (40*n - 30 + 3*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) - 7*((n+3) mod 5) - 2*((n+4) mod 5))/25.
a(5k) = 8k-2, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-5, a(5k-4) = 8k-8. (End)
MAPLE
A047426:=n->8*floor(n/5)+[(0, 3, 4, 5, 6)][(n mod 5)+1]: seq(A047426(n), n=0..100); # Wesley Ivan Hurt, Aug 01 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 3, 4, 5, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Aug 01 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 3, 4, 5, 6, 8}, 70] (* Harvey P. Dale, Jun 14 2020 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 3, 4, 5, 6]]; // Wesley Ivan Hurt, Aug 01 2016
(PARI) a(n)=[-2, 0, 3, 4, 5][n%5+1] + n\5*8 \\ Charles R Greathouse IV, Aug 01 2016
CROSSREFS
Sequence in context: A100585 A023367 A291880 * A362781 A323527 A316091
KEYWORD
nonn,easy
STATUS
approved