[go: up one dir, main page]

login
A047414
Numbers that are congruent to {0, 3, 4, 6} mod 8.
1
0, 3, 4, 6, 8, 11, 12, 14, 16, 19, 20, 22, 24, 27, 28, 30, 32, 35, 36, 38, 40, 43, 44, 46, 48, 51, 52, 54, 56, 59, 60, 62, 64, 67, 68, 70, 72, 75, 76, 78, 80, 83, 84, 86, 88, 91, 92, 94, 96, 99, 100, 102, 104, 107, 108, 110, 112, 115, 116, 118, 120, 123, 124
OFFSET
1,2
FORMULA
G.f.: x^2*(3+x+2*x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-7+i^(2*n)-i^(-n)-i^n)/4 where i=sqrt(-1).
a(2k) = A047398(k), a(2k-1) = A008586(k-1) for k>0. (End)
E.g.f.: (4 - cos(x) + 4*(x - 1)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = 5*log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16 - (2-sqrt(2))*Pi/16. - Amiram Eldar, Dec 21 2021
MAPLE
A047414:=n->(8*n-7+I^(2*n)-I^(-n)-I^n)/4: seq(A047414(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 3, 4, 6}, Mod[#, 8]]&] (* Harvey P. Dale, May 10 2013 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 3, 4, 6]]; // Wesley Ivan Hurt, May 24 2016
CROSSREFS
Sequence in context: A325455 A337455 A080728 * A109402 A020901 A181714
KEYWORD
nonn,easy
STATUS
approved