[go: up one dir, main page]

login
A045771
Number of similar sublattices of index n^2 in root lattice D_4.
2
1, 1, 8, 1, 12, 8, 16, 1, 41, 12, 24, 8, 28, 16, 96, 1, 36, 41, 40, 12, 128, 24, 48, 8, 97, 28, 176, 16, 60, 96, 64, 1, 192, 36, 192, 41, 76, 40, 224, 12, 84, 128, 88, 24, 492, 48, 96, 8, 177, 97, 288, 28, 108, 176, 288, 16, 320, 60, 120, 96, 124, 64, 656, 1
OFFSET
1,3
COMMENTS
Multiplicative with a(2^p) = 1, a(p^e) = (e+1)*p^e + (2*(1+(e*p-e-1)*p^e))/((p-1)^2), p>2. - Christian G. Bower, May 21 2005
LINKS
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, Canad. J. Math. (1999), 51 1258-1276.
Michael Baake and Peter Zeiner, "Similar Sublattices", Ch. 3.5 in Aperiodic Order, Vol. 2: Crystallography and Almost Periodicity, Cambridge, 2017, see page 105.
J. H. Conway, E. M. Rains and N. J. A. Sloane, On the existence of similar sublattices, Canad. J. Math. 51 (1999), 1300-1306 (Abstract, pdf, ps).
MATHEMATICA
Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; p > 0 :> If[1 <= p <= 2, 1, (e + 1) p^e + (2 (1 + (e p - e - 1)*p^e))/((p - 1)^2)]] &, 64] (* Michael De Vlieger, Mar 02 2018 *)
PROG
(PARI) fp(p, e) = if (p % 2, (e+1)*p^e + 2*(1-(e+1)*p^e+e*p^(e+1))/(p-1)^2, 1);
a(n) = { my(f = factor(n)); prod(i=1, #f~, fp(f[i, 1], f[i, 2])); } \\ Michel Marcus, Mar 03 2014
CROSSREFS
Cf. A035292.
Sequence in context: A032012 A092702 A070475 * A070488 A349142 A322079
KEYWORD
nonn,mult
AUTHOR
Michael Baake (baake(AT)miles.math.ualberta.ca)
EXTENSIONS
More terms from Michel Marcus, Mar 03 2014
STATUS
approved