[go: up one dir, main page]

login
A035343
Triangle of coefficients in expansion of (1 + x + x^2 + x^3 + x^4)^n.
27
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 246, 426, 666
OFFSET
0,8
COMMENTS
Coefficient of x^k in (1 + x + x^2 + x^3 + x^4)^n is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 4 objects to fall in each urn. - N-E. Fahssi, Mar 16 2008
The n-th row has 4n+1 terms (A016813). - Michel Marcus, Sep 08 2013
Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2), (1,3), (1,4). - Nicholas Ham, Sep 14 2018
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78, 16. for q=5.
D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
LINKS
Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - From N. J. A. Sloane, Oct 13 2012
Said Amrouche, Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
Armen G. Bagdasaryan, Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
Tomislav Došlić, Block allocation of a sequential resource, Ars Mathematica Contemporanea (2019) Vol. 17, 79-88.
Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], (25-July-2012).
D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy)
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2006.
J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63, No. 1 (1956), pp. 20-27.
Kuhapatanakul, Kantaphon; Anantakitpaisal, Pornpawee The k-nacci triangle and applications. Cogent Math. 4, Article ID 1333293, 13 p. (2017).
T. Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014) # 14.10.4.
Eric Rowland, A matrix generalization of a theorem of Fine, arXiv:1704.05872 [math.NT], 2017. See p.5.
Eric Rowland, A matrix generalization of a theorem of Fine, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A18.
Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257 [math.CO], 2016.
FORMULA
T(n,k) = Sum_{i = 0..floor(k/5)} (-1)^i*binomial(n,i)*binomial(n+k-1-5*i,n-1) for n >= 0 and 0 <= k <= 4*n. - Peter Bala, Sep 07 2013
EXAMPLE
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
[0] 1;
[1] 1, 1, 1, 1, 1;
[2] 1, 2, 3, 4, 5, 4, 3, 2, 1;
[3] 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1;
[4] ...
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 5-nomials as a table
r := 5: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
MATHEMATICA
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *)
PROG
(Maxima) pentanomial(n, k):=coeff(expand((1+x+x^2+x^3+x^4)^n), x, k);
create_list(pentanomial(n, k), n, 0, 6, k, 0, 4*n); \\ Emanuele Munarini, Mar 15 2011
(PARI) row(n) = Vec(((1 + x + x^2 + x^3 + x^4)^n) + O(x^(4*n+1)))
trianglerows(n) = for(k=0, n-1, print(row(k)))
/* Print initial 5 rows of triangle as follows */
trianglerows(5) \\ Felix Fröhlich, Aug 26 2018
KEYWORD
nonn,tabf,easy
STATUS
approved