[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033213
Primes of form x^2+17*y^2.
2
17, 53, 149, 157, 281, 293, 349, 353, 409, 461, 509, 569, 593, 613, 661, 733, 797, 829, 937, 977, 1097, 1237, 1361, 1381, 1409, 1453, 1597, 1709, 1721, 1733, 1753, 1777, 1861, 2053, 2089, 2129, 2141
OFFSET
1,1
COMMENTS
Apart from the first term, odd primes p such that (-17/p) = 1 and x^4 - x^2 = 4 has a solution mod p. - Charles R Greathouse IV, Nov 11 2012
All terms are in {1, 9, 13, 17, 21, 25, 33, 49, 53} mod 68, but this not sufficient for inclusion. - Charles R Greathouse IV, Nov 11 2012
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[1, 0, 17, 10000] (* see A106856 *)
PROG
(PARI) is(n)=if(kronecker(17, n)>0 && kronecker(-17, n)>0 && n>2 && isprime(n), kronecker(lift((1+sqrt(Mod(17, n)))/2), n)>0, n==17) \\ Charles R Greathouse IV, Nov 11 2012
(Magma) /* By first comment: */ [17] cat [p: p in PrimesInInterval(3, 2200) | LegendreSymbol(-17, p) eq 1 and exists{x: x in ResidueClassRing(p) | x^4-x^2 eq 4}]; // Bruno Berselli, Nov 11 2012
CROSSREFS
Sequence in context: A248697 A180456 A154409 * A082078 A107175 A244270
KEYWORD
nonn,easy
AUTHOR
STATUS
approved