[go: up one dir, main page]

login
A028574
Expansion of 1/((1-16*x)^2*(1 - 14*x + 56*x^2 - 64*x^3)).
2
1, 46, 1356, 32856, 714672, 14543712, 283133632, 5342645632, 98527058688, 1785505986048, 31916125744128, 564249389488128, 9885635491508224, 171893957900591104, 2969895694579974144, 51031902826852614144, 872728343238158254080
OFFSET
0,2
COMMENTS
The original o.g.f. was transferred to sequence A308436.
LINKS
FORMULA
From G. C. Greubel, May 28 2019: (Start)
a(n) = 2^n*(3 - 49*2^(n+1) + 147*2^(2*n+3) + (21*n -10)*2^(3*n+6))/441.
E.g.f.: (3 - 98*exp(2*x) + 1176*exp(6*x) + 128*(-5 + 168*x)*exp(14*x) )*exp(2*x)/441. (End)
MATHEMATICA
CoefficientList[Series[1/((1-16*x)^2*(1-14*x+56*x^2-64*x^3)), {x, 0, 20}], x] (* G. C. Greubel, May 28 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec(1/((1-16*x)^2*(1-14*x+56*x^2-64*x^3))) \\ G. C. Greubel, May 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( 1/((1-16*x)^2*(1-14*x+56*x^2-64*x^3)) )); // G. C. Greubel, May 28 2019
(Sage) (1/((1-16*x)^2*(1-14*x+56*x^2-64*x^3))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 28 2019
CROSSREFS
Cf. A308436.
Sequence in context: A188412 A066403 A286788 * A302767 A078195 A103725
KEYWORD
nonn,easy
EXTENSIONS
Original name and explicit formula of Yahia Kahloune moved to A308436.
G.f. corrected by Georg Fischer, May 27 2019
STATUS
approved