[go: up one dir, main page]

login
A025469
Number of partitions of n into 3 distinct positive cubes.
11
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1010
COMMENTS
In other words, number of solutions to the equation n = x^3 + y^3 + z^3 with x > y > z > 0. - Antti Karttunen, Aug 29 2017
FORMULA
a(n) = A025465(n) - A025468(n). - Antti Karttunen, Aug 29 2017
EXAMPLE
From Antti Karttunen, Aug 29 2017: (Start)
For n = 36 there is one solution: 36 = 27 + 8 + 1, thus a(36) = 1.
For n = 1009 there are two solutions: 1009 = 10^3 + 2^3 + 1^3 = 9^3 + 6^3 + 4^3, thus a(1009) = 2. This is also the first point where sequence attains value greater than one.
(End)
MAPLE
A025469 := proc(n)
local a, x, y, zcu ;
a := 0 ;
for x from 1 do
if 3*x^3 > n then
return a;
end if;
for y from x+1 do
if x^3+2*y^3 > n then
break;
end if;
zcu := n-x^3-y^3 ;
if zcu > y^3 and isA000578(zcu) then
a := a+1 ;
end if;
end do:
end do:
end proc:
seq(A025469(n), n=1..80) ; # R. J. Mathar, Jun 15 2018
MATHEMATICA
Table[Count[IntegerPartitions[n, {3}], _?(And[UnsameQ @@ #, AllTrue[#, IntegerQ[#^(1/3)] &]] &)], {n, 105}] (* Michael De Vlieger, Aug 29 2017 *)
PROG
(PARI) A025469(n) = { my(s=0); for(x=1, n, if(ispower(x, 3), for(y=x+1, n-x, if(ispower(y, 3), for(z=y+1, n-(x+y), if((ispower(z, 3)&&(x+y+z)==n), s++)))))); (s); }; \\ Antti Karttunen, Aug 29 2017
CROSSREFS
Cf. A025465 (not necessarily distinct), A025468, A025419 (greedy inverse).
Cf. A024975 (positions of nonzero terms), A024974 (positions of terms > 1), A025399-A025402.
Sequence in context: A248805 A307721 A023976 * A025466 A072769 A353625
KEYWORD
nonn
STATUS
approved