[go: up one dir, main page]

login
A024362
Number of primitive Pythagorean triangles with hypotenuse n.
19
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
1,65
COMMENTS
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times C takes value n.
a(A137409(n)) = 0; a(A008846(n)) > 0; a(A120960(n)) = 1; a(A024409(n)) > 1; a(A159781(n)) = 4. - Reinhard Zumkeller, Dec 02 2012
If the formula given below is used one is sure to find all a(n) values for hypotenuses n <= N if the summation indices r and s are cut off at rmax(N) = floor((sqrt(N-4)+1)/2) and smax(N) = floor(sqrt(N-1)/2). a(n) is the number of primitive Pythagorean triples with hypotenuse n modulo catheti exchange. - Wolfdieter Lang, Jan 10 2016
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 116-117, 1966.
LINKS
Eric Weisstein's World of Mathematics, Pythagorean Triple
FORMULA
a(n) = [q^n] T(q), n >= 1, where T(q) = Sum_{r>=1,s>=1} rpr(2*r-1, 2*s)*q^c(r,s), with rpr(k,l) = 1 if gcd(k,l) = 1, otherwise 0, and c(r,s) = (2*r-1)^2 + (2s)^2. - Wolfdieter Lang, Jan 10 2016
If all prime factors of n are in A002144 then a(n) = 2^(A001221(n)-1), otherwise a(n) = 0. - Robert Israel, Jan 11 2016
a(4*n+1) = A106594(n), other terms are 0. - Andrey Zabolotskiy, Jan 21 2022
MAPLE
f:= proc(n) local F;
F:= numtheory:-factorset(n);
if map(t -> t mod 4, F) <> {1} then return 0 fi;
2^(nops(F)-1)
end proc:
seq(f(n), n=1..100); # Robert Israel, Jan 11 2016
MATHEMATICA
Table[a0=IntegerExponent[n, 2]; If[n==1 || a0>0, cnt=0, m=n/2^a0; p=Transpose[FactorInteger[m]][[1]]; c=Count[p, _?(Mod[#, 4]==1 &)]; If[c==Length[p], cnt=2^(c-1), 0]]; cnt, {n, 100}]
a[n_] := If[n==1||EvenQ[n]||Length[Select[FactorInteger[n], Mod[#[[1]], 4]==3 &]] >0, 0, 2^(Length[FactorInteger[n]]-1)]; Array[a, 100] (* Frank M Jackson, Jan 28 2018 *)
PROG
(Haskell)
a024362 n = sum [a010052 y | x <- takeWhile (< nn) $ tail a000290_list,
let y = nn - x, y <= x, gcd x y == 1]
where nn = n ^ 2
-- Reinhard Zumkeller, Dec 02 2012
(PARI) a(n)={my(m=0, k=n, n2=n*n, k2, l2);
while(1, k=k-1; k2=k*k; l2=n2-k2; if(l2>k2, break); if(issquare(l2), if(gcd(n, k)==1, m++))); return(m); } \\ Stanislav Sykora, Mar 23 2015
CROSSREFS
KEYWORD
nonn
STATUS
approved