OFFSET
0,3
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Index entries for linear recurrences with constant coefficients, signature (0,2,1,-1,-2,0,1).
FORMULA
G.f.: (1-x^5)/((1-x)*(1-x^2)^2*(1-x^3)).
Euler transform of length 5 sequence [ 1, 2, 1, 0, -1]. - Michael Somos, May 22 2014
a(-3 - n) = a(n). - Michael Somos, May 22 2014
a(2*n + 2) - a(2*n) = A032793(n + 2). a(2*n + 3) - a(2*n + 1) = A042706(n + 2). - Michael Somos, May 22 2014
EXAMPLE
G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 8*x^5 + 13*x^6 + 14*x^7 + 20*x^8 + ...
MATHEMATICA
CoefficientList[Series[(1-x^5)/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 59}], x] (* Georg Fischer, Oct 13 2020 *)
PROG
(PARI) {a(n) = if( n%2, (n + 1) * (5*n + 7) + 8 * (n%6 == 3), (n + 2) * (5*n + 8) + 8 * (n%6 == 0) ) / 24}; /* Michael Somos, May 22 2014 */
(PARI) {a(n) = if( n<0, n = -3 - n); polcoeff( (1 - x^5) / ((1 - x) * (1 - x^2)^2 * (1 - x^3)) + x * O(x^n), n)}; /* Michael Somos, May 22 2014 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved