[go: up one dir, main page]

login
A013679
Continued fraction for zeta(2) = Pi^2/6.
28
1, 1, 1, 1, 4, 2, 4, 7, 1, 4, 2, 3, 4, 10, 1, 2, 1, 1, 1, 15, 1, 3, 6, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 5, 1, 2, 2, 1, 1, 6, 27, 20, 3, 97, 105, 1, 1, 1, 1, 1, 45, 2, 8, 19, 1, 4, 1, 1, 3, 1, 2, 1, 1, 1, 5, 1, 1, 2, 3, 6, 1, 1, 1, 2, 1, 5, 1, 1, 2, 9, 5, 3, 2, 1, 1, 1
OFFSET
0,5
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 23.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
G. Xiao, Contfrac
EXAMPLE
1.644934066848226436472415166... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...))))
MATHEMATICA
ContinuedFraction[ Pi^2/6, 100]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^2/6); for (n=1, 20000, write("b013679.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009
CROSSREFS
Cf. A013661 (decimal expansion).
Cf. continued fractions for zeta(3)-zeta(20): A013631, A013680-A013696.
Sequence in context: A066978 A236187 A114566 * A096428 A091007 A180156
KEYWORD
nonn,cofr,nice,easy
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 10 2024
STATUS
approved