OFFSET
0,1
COMMENTS
a(n) = A153466(n) mod 9. - Paul Curtz, Dec 27 2008
Continued fraction expansion of A176439. - Bruno Berselli, Mar 15 2011
Final digit of 16^(2^n) + 1. That is, the last digit of every Fermat number F(n) is 7, where n >= 2. - Arkadiusz Wesolowski, Jul 28 2011
Decimal expansion of 7/9. - Arkadiusz Wesolowski, Sep 12 2011
LINKS
Tanya Khovanova, Recursive Sequences
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1015
Christian Perfect, Integer sequence reviews on Numberphile (or vice versa), 2013.
Index entries for linear recurrences with constant coefficients, signature (1).
FORMULA
G.f.: 7/(1-x). - Bruno Berselli, Mar 15 2011
a(n) = 7. - Arkadiusz Wesolowski, Sep 12 2011
E.g.f.: 7*e^x. - Vincenzo Librandi, Jan 28 2012
MATHEMATICA
ContinuedFraction[(7 + Sqrt@ 53)/2, 105] (* Or *)
CoefficientList[ Series[7/(1 - x), {x, 0, 104}], x] (* Robert G. Wilson v *)
PadRight[{}, 90, 7] (* or *) Table[7, {90}] (* Harvey P. Dale, Jun 05 2013 *)
PROG
(PARI) a(n)=7 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved