[go: up one dir, main page]

login
A010727
Constant sequence: the all 7's sequence.
15
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
0,1
COMMENTS
a(n) = A153466(n) mod 9. - Paul Curtz, Dec 27 2008
Continued fraction expansion of A176439. - Bruno Berselli, Mar 15 2011
Final digit of 16^(2^n) + 1. That is, the last digit of every Fermat number F(n) is 7, where n >= 2. - Arkadiusz Wesolowski, Jul 28 2011
Decimal expansion of 7/9. - Arkadiusz Wesolowski, Sep 12 2011
FORMULA
G.f.: 7/(1-x). - Bruno Berselli, Mar 15 2011
a(n) = 7. - Arkadiusz Wesolowski, Sep 12 2011
E.g.f.: 7*e^x. - Vincenzo Librandi, Jan 28 2012
MATHEMATICA
ContinuedFraction[(7 + Sqrt@ 53)/2, 105] (* Or *)
CoefficientList[ Series[7/(1 - x), {x, 0, 104}], x] (* Robert G. Wilson v *)
PadRight[{}, 90, 7] (* or *) Table[7, {90}] (* Harvey P. Dale, Jun 05 2013 *)
PROG
(PARI) a(n)=7 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A000012 (the all 1's sequence), A153466, A176439.
Sequence in context: A112114 A031182 A106705 * A186684 A255910 A108689
KEYWORD
nonn,easy
STATUS
approved