[go: up one dir, main page]

login
A008361
Coordination sequence for D_8 lattice.
2
1, 112, 2592, 25424, 149568, 629808, 2100832, 5910288, 14610560, 32641008, 67232416, 129565392, 236214464, 410909616, 686647008, 1108180624, 1734926592, 2644311920, 3935599392, 5734220368
OFFSET
0,2
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), 253-256
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
FORMULA
a(n) = 16/315*n*(219 + 1036*n^2 + 826*n^4 + 124*n^6). - Harvey P. Dale, Feb 21 2012
a(0)=1, a(1)=112, a(2)=2592, a(3)=25424, a(4)=149568, a(5)=629808, a(6)=2100832, a(7)=5910288, a(8)=14610560, a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Feb 21 2012
G.f.: (x^8 + 104*x^7 + 1724*x^6 + 7768*x^5 + 12550*x^4 + 7768*x^3 + 1724*x^2 + 104*x + 1)/(x - 1)^8. - Colin Barker, Sep 26 2012
MAPLE
1984/315*n^7+1888/45*n^5+2368/45*n^3+1168/105*n;
MATHEMATICA
Join[{1}, Table[16/315*n*(219+1036*n^2+826*n^4+124*n^6), {n, 30}]] (* or *) Join[{1}, LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {112, 2592, 25424, 149568, 629808, 2100832, 5910288, 14610560}, 30]] (* Harvey P. Dale, Feb 21 2012 *)
PROG
(PARI) a(n) = 16/315*n*(219 + 1036*n^2 + 826*n^4 + 124*n^6) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
A row of array A103903.
Sequence in context: A188153 A163194 A267327 * A271671 A172129 A304552
KEYWORD
nonn,nice,easy
STATUS
approved