[go: up one dir, main page]

login
A008355
Coordination sequence for D_5 lattice.
2
1, 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720, 182002, 265960, 376130, 517480, 695410, 915752, 1184770, 1509160, 1896050, 2353000, 2888002, 3509480, 4226290, 5047720, 5983490, 7043752
OFFSET
0,2
LINKS
M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), 253-256.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
FORMULA
a(n) = 2*(9*n^2+1)*(n^2+1) (see MAPLE line).
G.f.: (1+x)*(1+34*x+146*x^2+34*x^3+x^4)/(1-x)^5. [Colin Barker, Apr 14 2012]
MAPLE
2*(9*n^2+1)*(n^2+1);
MATHEMATICA
CoefficientList[Series[(1+x)*(1+34*x+146*x^2+34*x^3+x^4)/(1-x)^5, {x, 0, 30}], x] (* Vincenzo Librandi, Apr 16 2012 *)
PROG
(Magma) [1]cat[2*(9*n^2+1)*(n^2+1): n in [1..30]]; // Vincenzo Librandi, Apr 16 2012
CROSSREFS
A row of array A103903.
Sequence in context: A190312 A229532 A252180 * A229716 A221820 A301528
KEYWORD
nonn,easy
STATUS
approved