[go: up one dir, main page]

login
A008851
Congruent to 0 or 1 mod 5.
38
0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 25, 26, 30, 31, 35, 36, 40, 41, 45, 46, 50, 51, 55, 56, 60, 61, 65, 66, 70, 71, 75, 76, 80, 81, 85, 86, 90, 91, 95, 96, 100, 101, 105, 106, 110, 111, 115, 116, 120, 121, 125, 126, 130, 131, 135, 136, 140, 141, 145, 146, 150, 151
OFFSET
1,3
COMMENTS
Numbers k that have the same last digit as k^2.
REFERENCES
L. E. Dickson, History of the Theory of Numbers, I, p. 459.
FORMULA
a(n) = 5*n - a(n-1) - 9, n >= 2. - Vincenzo Librandi, Nov 18 2010 [Corrected for offset by David Lovler, Oct 10 2022]
G.f.: x^2*(1+4*x) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 07 2011
a(n+1) = Sum_{k>=0} A030308(n,k)*A146523(k). - Philippe Deléham, Oct 17 2011
a(n) = floor((5/3)*floor(3*(n-1)/2)). - Clark Kimberling, Jul 04 2012
a(n) = (10*n - 13 - 3*(-1)^n)/4. - Robert Israel, Nov 17 2014 [Corrected by David Lovler, Sep 21 2022]
E.g.f.: 4 + ((10*x - 13)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 11 2022
Sum_{n>=2} (-1)^n/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/(2*sqrt(5)) + log(5)/4, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 12 2022
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+5 od: seq(a[n], n=0..61); # Zerinvary Lajos, Mar 16 2008
MATHEMATICA
Select[Range[0, 151], MemberQ[{0, 1}, Mod[#, 5]] &] (* T. D. Noe, Mar 31 2013 *)
PROG
(Haskell)
a008851 n = a008851_list !! (n-1)
a008851_list = [10*n + m | n <- [0..], m <- [0, 1, 5, 6]]
-- Reinhard Zumkeller, Jul 27 2011
(PARI) a(n) = 5*(n\2)+bitand(n, 1); /* Joerg Arndt, Mar 31 2013 */
(PARI) a(n) = floor((5/3)*floor(3*(n-1)/2)); /* Joerg Arndt, Mar 31 2013 */
(Magma) [n: n in [0..200] | n mod 5 in {0, 1}]; // Vincenzo Librandi, Nov 17 2014
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Jul 27 2011
STATUS
approved