[go: up one dir, main page]

login
A008706
Coordination sequence for 3.3.3.4.4 planar net.
28
1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
OFFSET
0,2
COMMENTS
Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002
LINKS
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
Reticular Chemistry Structure Resource, cem
N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
FORMULA
From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023
EXAMPLE
G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
MATHEMATICA
Join[{1}, LinearRecurrence[{2, -1}, {5, 10}, 100]] (* Jean-François Alcover, Dec 13 2018 *)
PROG
(Magma) [0^n+5*n: n in [0..50] ]; // Vincenzo Librandi, Aug 21 2011
(PARI) a(n)=0^n+5*n \\ Charles R Greathouse IV, Mar 19 2015
CROSSREFS
Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.
Sequence in context: A350744 A248359 A008587 * A172336 A140233 A172328
KEYWORD
nonn,easy
STATUS
approved