OFFSET
1,1
COMMENTS
a(1) = 2, define f(k) = 2k+1, then a(n+1) = least prime fff...(a(n)). After 383 the next terem is 6143. We have f(383) = 767 (composite), f(767) = 1535 (composite), f(1565)=3071(composite), f(3071) = 6143 (prime), hence the next term is 6143= ffff(383). - Amarnath Murthy, Jul 13 2005
If n is in the sequence and m=(n+1)/3 then m is a solution of the equation, sigma(x+sigma(x))=3x (*). Is it true that there is no other solution of (*)? - Farideh Firoozbakht, Dec 05 2005
REFERENCES
H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, pp. 381-384.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..27
Heiko Harborth, On h-perfect numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 57-62.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Wilfrid Keller, List of primes k*2^n - 1 for k < 300
Amelia Carolina Sparavigna, A recursive formula for Thabit numbers, Politecnico di Torino (Italy, 2019).
Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Number
FORMULA
a(n) = 3*2^A002235(n)-1. - Zak Seidov, Jul 21 2016
MATHEMATICA
Reap[For[n = 0, n <= 103, n++, If[PrimeQ[p = 3*2^n - 1], Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 12 2012 *)
Select[Table[3 2^n - 1, {n, 0, 100}], PrimeQ] (* Vincenzo Librandi, Mar 20 2013 *)
PROG
(Magma) [a: n in [0..200] | IsPrime(a) where a is 3*2^n-1]; // Vincenzo Librandi, Mar 20 2013
(Haskell)
a007505 n = a007505_list !! (n-1)
a007505_list = filter ((== 1) . a010051') a083329_list
-- Reinhard Zumkeller, Sep 10 2013
(PARI) for(n=0, 100, if(isprime(t=3<<n-1), print1(t", "))) \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
STATUS
approved