[go: up one dir, main page]

login
A007465
Exponential-convolution of triangular numbers with themselves.
(Formerly M4195)
1
1, 6, 30, 128, 486, 1692, 5512, 17040, 50496, 144512, 401664, 1089024, 2890240, 7529472, 19298304, 48754688, 121602048, 299827200, 731643904, 1768685568, 4239261696, 10081796096, 23805296640, 55839817728, 130187001856, 301813727232, 696036360192, 1597358735360
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
FORMULA
G.f.: (-1-6*x^4+12*x^3-10*x^2+4*x)/(2*x-1)^5. [Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009]
E.g.f.: (1/4)*exp(2*x)*(2 + 4*x + x^2)^2. - Ilya Gutkovskiy, Mar 21 2018
MATHEMATICA
a = DifferenceRoot[Function[{a, n}, {(-2n^4 - 28n^3 - 158n^2 - 388n - 384)* a[n] + (n^4 + 10n^3 + 43n^2 + 74n + 64)*a[n+1] == 0, a[0] == 1}]];
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Feb 24 2019 *)
CROSSREFS
Cf. A000217.
Sequence in context: A334326 A131458 A032205 * A261389 A073389 A320744
KEYWORD
nonn
AUTHOR
STATUS
approved