[go: up one dir, main page]

login
A006368
The "amusical permutation" of the nonnegative numbers: a(2n)=3n, a(4n+1)=3n+1, a(4n-1)=3n-1.
(Formerly M2249)
44
0, 1, 3, 2, 6, 4, 9, 5, 12, 7, 15, 8, 18, 10, 21, 11, 24, 13, 27, 14, 30, 16, 33, 17, 36, 19, 39, 20, 42, 22, 45, 23, 48, 25, 51, 26, 54, 28, 57, 29, 60, 31, 63, 32, 66, 34, 69, 35, 72, 37, 75, 38, 78, 40, 81, 41, 84, 43, 87, 44, 90, 46, 93, 47, 96, 49, 99, 50, 102, 52, 105, 53
OFFSET
0,3
COMMENTS
A permutation of the nonnegative integers.
There is a famous open question concerning the closed trajectories under this map - see A217218, A028393, A028394, and Conway (2013).
This is lodumo_3 of A131743. - Philippe Deléham, Oct 24 2011
Multiples of 3 interspersed with numbers other than multiples of 3. - Harvey P. Dale, Dec 16 2011
For n>0: a(2n+1) is the smallest number missing from {a(0),...,a(2n-1)} and a(2n) = a(2n-1) + a(2n+1). - Bob Selcoe, May 24 2017
From Wolfdieter Lang, Sep 21 2021: (Start)
The permutation P of positive natural numbers with P(n) = a(n-1) + 1, for n >= 1, is the inverse of the permutation given in A265667, and it maps the index n of A178414 to the index of A047529: A178414(n) = A047529(P(n)).
Thus each number {1, 3, 7} (mod 8) appears in the first column A178414 of the array A178415 just once. For the formulas see below. (End)
Starting at n = 1, the sequence equals the smallest unused positive number such that a(n)-a(n-1) does not appear as a term in the current sequence. Scott R. Shannon, Dec 20 2023
REFERENCES
J. H. Conway, Unpredictable iterations, in Proc. Number Theory Conf., Boulder, CO, 1972, pp. 49-52.
R. K. Guy, Unsolved Problems in Number Theory, E17.
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 5.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7..
J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198. [Introduces the name "amusical permutation".]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
S. Schreiber & N. J. A. Sloane, Correspondence, 1980
FORMULA
If n even, then a(n) = 3*n/2, otherwise, a(n) = round(3*n/4).
G.f.: x*(1+3*x+x^2+3*x^3+x^4)/((1-x^2)*(1-x^4)). - Michael Somos, Jul 23 2002
a(n) = -a(-n).
From Reinhard Zumkeller, Nov 20 2009: (Start)
a(n) = A006369(n) - A168223(n).
A168221(n) = a(a(n)).
A168222(a(n)) = A006369(n). (End)
a(n) = a(n-2) + a(n-4) - a(n-6); a(0)=0, a(1)=1, a(2)=3, a(3)=2, a(4)=6, a(5)=4. - Harvey P. Dale, Dec 16 2011
From Wolfdieter Lang, Sep 21 2021: (Start)
Formulas for the permutation P(n) = a(n-1) + 1 mentioned above:
P(n) = n + floor(n/2) if n is odd, and n - floor(n/4) if n is even.
P(n) = (3*n-1)/2 if n is odd; P(n) = (3*n+2)/4 if n == 2 (mod 4); and P(n) = 3*n/4 if n == 0 (mod 4). (End)
EXAMPLE
9 is odd so a(9) = round(3*9/4) = round(7-1/4) = 7.
MAPLE
f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi; # N. J. A. Sloane, Jan 21 2011
A006368:=(1+3*z+z**2+3*z**3+z**4)/(1+z**2)/(z-1)**2/(1+z)**2; # [Conjectured (correctly, except for the offset) by Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
Table[If[EvenQ[n], (3n)/2, Floor[(3n+2)/4]], {n, 0, 80}] (* or *) LinearRecurrence[ {0, 1, 0, 1, 0, -1}, {0, 1, 3, 2, 6, 4}, 80] (* Harvey P. Dale, Dec 16 2011 *)
PROG
(PARI) a(n)=(3*n+n%2)\(2+n%2*2)
(PARI) a(n)=if(n%2, round(3*n/4), 3*n/2)
(Haskell)
a006368 n | u' == 0 = 3 * u
| otherwise = 3 * v + (v' + 1) `div` 2
where (u, u') = divMod n 2; (v, v') = divMod n 4
-- Reinhard Zumkeller, Apr 18 2012
(Python)
def a(n): return 0 if n == 0 else 3*n//2 if n%2 == 0 else (3*n+1)//4
print([a(n) for n in range(72)]) # Michael S. Branicky, Aug 12 2021
(Magma) [n mod 2 eq 1 select Round(3*n/4) else 3*n/2: n in [0..80]]; // G. C. Greubel, Jan 03 2024
KEYWORD
nonn,nice,easy
EXTENSIONS
Edited by Michael Somos, Jul 23 2002
I replaced the definition with the original definition of Conway and Guy. - N. J. A. Sloane, Oct 03 2012
STATUS
approved