[go: up one dir, main page]

login
A006296
Number of genus 1 rooted maps with 3 faces with n vertices.
(Formerly M5341)
11
70, 1720, 24164, 256116, 2278660, 17970784, 129726760, 875029804, 5593305476, 34225196720, 201976335288, 1156128848680, 6447533938280, 35155923872640, 187959014565840, 987658610225052, 5110652802256260, 26084524995672080, 131501187454625560, 655590388845975000, 3235463376771463288, 15820770680078552000, 76708503479715247920, 369046200766330733880, 1762793459781859039080, 8364468224596427692896, 39445646133672676352560, 184956513528952419546448, 862615498961026097997392, 4003067488703222112053760, 18489846573354278755829152, 85028133934182275077421180, 389398354121840111751946628, 1776360539933013004774353872, 8073622060225813990245976280, 36567311475673299914222851832
OFFSET
4,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
LINKS
T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
FORMULA
G.f.: x(1-sqrt(1-4*x))(45+152*x+(25+8*x)sqrt(1-4*x))/(2(1-4*x)^(11/2)). - Sean A. Irvine, Nov 14 2010
MATHEMATICA
Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (45 + 152 x + (25 + 8 x) Sqrt[1 - 4 x]) / (2 (1 - 4 x)^(11 / 2)), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
PROG
(PARI)
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A006296_ser(N) = {
my(y = A000108_ser(N+1));
-2*y*(y-1)^4*(10*y^3 + 97*y^2 - 64*y - 8)/(y-2)^11;
};
Vec(A006296_ser(36)) \\ Gheorghe Coserea, Jun 04 2017
CROSSREFS
Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, this sequence, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 3 of A269921, column g=1 of A270407.
Sequence in context: A278548 A107421 A076430 * A047835 A133312 A333967
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved