[go: up one dir, main page]

login
A006279
Denominators of convergents to Cahen's constant: a(n+2) = a(n)^2*a(n+1) + a(n).
(Formerly M0914)
6
1, 1, 2, 3, 14, 129, 25298, 420984147, 269425140741515486, 47749585090209528873482531562977121, 3466137915373323052799848584927709551269254572949111609037058632767202
OFFSET
0,3
COMMENTS
Shifted square roots of partial quotients in continued fraction expansion of Cahen's constant: a(n) = sqrt(A006280(n+2)). - Jonathan Sondow, Aug 20 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. L. Davison and Jeffrey O. Shallit, Continued Fractions for Some Alternating Series, Monatshefte für Mathematik, Vol. 111 (1991), pp. 119-126; alternative link.
MAPLE
A006279 := proc(n) option remember; if n <= 1 then 1 else A006279(n-2)^2*A006279(n-1)+A006279(n-2) fi end:
seq(A006279(n), n=0..10);
MATHEMATICA
a[n_] := a[n] = If[n < 2, 1, a[n-2]^2*a[n-1] + a[n-2]];
Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Sep 23 2022 *)
PROG
(Python)
from itertools import islice
def A006279_gen(): # generator of terms
a, b = 1, 1
yield a
while True:
yield b
a, b = b, a*(a*b+1)
A006279_list = list(islice(A006279_gen(), 10)) # Chai Wah Wu, Mar 19 2024
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
EXTENSIONS
Definition clarified by Jonathan Sondow, Aug 20 2014
STATUS
approved