[go: up one dir, main page]

login
A006266
A continued cotangent.
(Formerly M2073)
18
2, 14, 2786, 21624372014, 10111847525912679844192131854786, 1033930953043290626825587838528711318150300040875029341893199068078185510802565166824630504014
OFFSET
0,1
COMMENTS
The next (6th) term is 280 digits long. - M. F. Hasler, Oct 06 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jeffrey Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B 80B (1976), no. 2, 285-290.
FORMULA
From Artur Jasinski, Sep 24 2008: (Start)
a(n+1) = a(n)^3 + 3*a(n) with a(0) = 2.
a(n) = round((1+sqrt(2))^(3^n)). [Corrected by M. F. Hasler, Oct 06 2014] (End)
From Peter Bala, Nov 15 2022: (Start)
a(n) = A002203(3^n).
a(n) = L(3^n,2), where L(n,x) denotes the n-th Lucas polynomial of A114525.
a(n) == 2 (mod 3).
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the companion Pell numbers).
The smallest positive residue of a(n) mod(3^n) = A271222(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271224. Cf. A006267. (End)
MAPLE
a := proc(n) option remember; if n = 1 then 14 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala Nov 15 2022
MATHEMATICA
Table[Round[(1+Sqrt[2])^(3^n)], {n, 0, 10}] (* Artur Jasinski, Sep 24 2008 *)
LucasL[3^Range[0, 7], 2] (* G. C. Greubel, Mar 25 2022 *)
PROG
(PARI) a(n, s=2)=for(i=2, n, s*=(s^2+3)); s \\ M. F. Hasler, Oct 06 2014
(Magma) [Evaluate(DicksonFirst(3^n, -1), 2): n in [0..7]]; // G. C. Greubel, Mar 25 2022
(Sage) [lucas_number2(3^n, 2, -1) for n in (0..7)] # G. C. Greubel, Mar 25 2022
KEYWORD
nonn,easy
EXTENSIONS
Edited by M. F. Hasler, Oct 06 2014
Offset corrected by G. C. Greubel, Mar 25 2022
STATUS
approved