[go: up one dir, main page]

login
A006221
From Apery continued fraction for zeta(3): zeta(3)=6/(5-1^6/(117-2^6/(535-3^6/(1463...))).
(Formerly M4026)
3
5, 117, 535, 1463, 3105, 5665, 9347, 14355, 20893, 29165, 39375, 51727, 66425, 83673, 103675, 126635, 152757, 182245, 215303, 252135, 292945, 337937, 387315, 441283, 500045, 563805, 632767, 707135, 787113, 872905, 964715, 1062747, 1167205, 1278293, 1396215, 1521175
OFFSET
0,1
REFERENCES
G. V. Chudnovsky, Transcendental numbers, pp. 45-69 of Number Theory Carbondale 1979, Lect. Notes Math. 751 (1982).
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 46.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. Flajolet, B. Vallee, and I. Vardi, Continued fractions from Euclid to the present day, preprint, 2000.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: (5 + 97*x + 97*x^2 + 5*x^3)/(1-x)^4.
a(n) = 34*n^3 + 51*n^2 + 27*n + 5 = (2*n + 1)*(17*n*(n+1) + 5) [Viennot, p.2].
Can be extended to negative indices by: a(n) = -a(-1-n).
E.g.f.: exp(x)*(5 + 112*x + 153*x^2 + 34*x^3). - Stefano Spezia, Nov 03 2024
EXAMPLE
zeta(3) = 1.20205690315959428539973816151...,
while eight terms of the sequence gives 6/(5-1^6/(117-2^6/(535-3^6/(1463-4^6/(3105-5^6/(9347-6^6/(14355)))))))) = 1.20205690315959366144848279245...
MAPLE
A006221:=z*(z+1)*(5*z**2+92*z+5)/(z-1)**4; [Conjectured by Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
a[n_] := (2n + 1)(17n^2 + 17n + 5);
a /@ Range[0, 31] (* Jean-François Alcover, Sep 03 2019 *)
PROG
(PARI) a(n)=34*n^3+51*n^2+27*n+5
(Haskell)
a006221 n = (17 * n * (n + 1) + 5) * (2 * n + 1)
-- Reinhard Zumkeller, Mar 13 2014
CROSSREFS
Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Cf. A005259.
Sequence in context: A156514 A319392 A268606 * A265977 A208387 A144998
KEYWORD
nonn,easy
EXTENSIONS
Typo in description corrected Apr 09 2006 (1436 should have been 1463). Thanks to Simon Plouffe for this correction.
STATUS
approved