OFFSET
0,3
COMMENTS
Entringer numbers.
REFERENCES
R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..483
B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 (1990), 16-26.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
FORMULA
From _Emeric Deutsch_, May 15 2004: (Start)
a(n) = Sum_{i=0..1+floor((n+1)/2)} (-1)^i * binomial(n, 2*i+1) * E[n+1-2i], where E[j] = A000111(j) = j!*[x^j](sec(x) + tan(x)) are the up/down or Euler numbers.
a(n) = T(n+2, n), where T is the triangle in A008282. (End)
a(n) = E[n+2] - E[n] where E[n] = A000111(n). - _Gerald McGarvey_, Oct 09 2006
E.g.f.: (sec(x) + tan(x))^2/cos(x) - (sec(x) + tan(x)). - _Sergei N. Gladkovskii_, Jun 29 2015
a(n) ~ n! * 2^(n+4) * n^2 / Pi^(n+3). - _Vaclav Kotesovec_, May 07 2020
EXAMPLE
a(2)=4 because we have 31425, 31524, 32415 and 32514.
MAPLE
f:=sec(x)+tan(x): fser:=series(f, x=0, 30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser, x^n) od: a:=n->sum((-1)^i*binomial(n, 2*i+1)*E[n+1-2*i], i=0..1+floor((n+1)/2)): seq(a(n), n=0..18);
# Alternatively after _Alois P. Heinz_ in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, 2): seq(a(n), n = 0..21); # _Peter Luschny_, Oct 27 2017
MATHEMATICA
t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 2, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
_N. J. A. Sloane_.
EXTENSIONS
More terms from _Emeric Deutsch_, May 24 2004
STATUS
approved