[go: up one dir, main page]

login
A006212
Number of down-up permutations of n+3 starting with n+1.
(Formerly M3485)
3
0, 1, 4, 14, 56, 256, 1324, 7664, 49136, 345856, 2652244, 22014464, 196658216, 1881389056, 19192151164, 207961585664, 2385488163296, 28879019769856, 367966308562084, 4922409168011264, 68978503204900376, 1010472388453728256, 15445185289163949004
OFFSET
0,3
COMMENTS
Entringer numbers.
REFERENCES
R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 (1990), 16-26.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
FORMULA
From _Emeric Deutsch_, May 15 2004: (Start)
a(n) = Sum_{i=0..1+floor((n+1)/2)} (-1)^i * binomial(n, 2*i+1) * E[n+1-2i], where E[j] = A000111(j) = j!*[x^j](sec(x) + tan(x)) are the up/down or Euler numbers.
a(n) = T(n+2, n), where T is the triangle in A008282. (End)
a(n) = E[n+2] - E[n] where E[n] = A000111(n). - _Gerald McGarvey_, Oct 09 2006
E.g.f.: (sec(x) + tan(x))^2/cos(x) - (sec(x) + tan(x)). - _Sergei N. Gladkovskii_, Jun 29 2015
a(n) ~ n! * 2^(n+4) * n^2 / Pi^(n+3). - _Vaclav Kotesovec_, May 07 2020
EXAMPLE
a(2)=4 because we have 31425, 31524, 32415 and 32514.
MAPLE
f:=sec(x)+tan(x): fser:=series(f, x=0, 30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser, x^n) od: a:=n->sum((-1)^i*binomial(n, 2*i+1)*E[n+1-2*i], i=0..1+floor((n+1)/2)): seq(a(n), n=0..18);
# Alternatively after _Alois P. Heinz_ in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, 2): seq(a(n), n = 0..21); # _Peter Luschny_, Oct 27 2017
MATHEMATICA
t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 2, n]; Array[a, 30, 0] (* _Jean-François Alcover_, Feb 12 2016 *)
CROSSREFS
Column k=3 of A010094.
Sequence in context: A370720 A346816 A375454 * A126701 A309514 A151884
KEYWORD
nonn,easy
AUTHOR
_N. J. A. Sloane_.
EXTENSIONS
More terms from _Emeric Deutsch_, May 24 2004
STATUS
approved