OFFSET
0,3
COMMENTS
Number of paths of semilength n staying weakly within the 1st quadrant starting at (0,0) and ending on the X-axis using steps (1,1), (1,-1) and (1,3). - David Scambler, Jun 21 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..400
Gi-Sang Cheon, Sung-Tae Jin, and Louis W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137.
Nathan Gabriel, Katherine Peske, Lara Pudwell, and Samuel Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5.
Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
Simon Plouffe, Approximations of generating functions and a few conjectures, arXiv:0911.4975 [math.NT], 2009, Master's Thesis.
Lara Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. [N. J. A. Sloane, Jan 03 2013]
Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, Enumeration of the Motzkin paths above a line of rational slope, Disc. Math. (2024) Vol. 347, Issue 7, 114013.
FORMULA
Reference gives explicit formula.
G.f.: A(x) = (1/x)*serreverse(x/G(x)) where G(x) is g.f. of A001006 (Motzkin numbers). G.f. satisfies: A(x)^2 = (1/x)*serreverse( x/(1+x+x^2)^2 ). - Paul D. Hanna, Mar 20 2005
G.f.: revogf is 1/2*(-x+1+(-(1+x)*(-1+3*x))^(1/2))*x. - Simon Plouffe, Master's Thesis, UQAM 1992
a(n) = A026302(n)/(n+1). - Mark van Hoeij, Jul 02 2010
a(n) = (1/(2*n+1))*Sum_{j=0...2*n+1} binomial(j,2*j-2-3*n)*binomial(2*n+1,j). - Vladimir Kruchinin, Dec 24 2010
a(n) ~ sqrt(89 + 277/sqrt(13)) * ((70 + 26*sqrt(13))/27)^n / (9*sqrt(6*Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 15 2013
With interpolated zeros, the o.g.f. = series reversion of x/(1 + x^2 + x^4) = x + x^3 + 3*x^5 + 11*x^7 + 46*x^9 + .... - Peter Bala, Dec 17 2013
Conjecture: 3*n*(3*n+2)*(3*n+1)*a(n) + (-275*n^3 + 475*n^2 - 328*n + 68)*a(n-1) + 2*(2*n-3)*(139*n^2 - 507*n + 398)*a(n-2) + 180*(2*n-5)*(n-2)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, May 30 2014
MAPLE
series(RootOf(x^2*g^4+x*g^2-g+1, g), x=0, 20); # Mark van Hoeij, Nov 16 2011
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 1,
2*((910*n^4 -1085*n^3 +227*n^2 +92*n -24) *a(n-1)
+(936*n^4 -2520*n^3 +1710*n^2 +90*n-216) *a(n-2))/
(3*n *(117*n^3 +36*n^2 -55*n -18)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 07 2012
MATHEMATICA
Table[1/(2*n+1)*Sum[Binomial[j, 2*j-2-3*n]*Binomial[2*n+1, j], {j, 0, 2*n+1}], {n, 0, 20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Aug 15 2013 *)
PROG
(PARI) {a(n)=polcoeff(((1/x)*serreverse(x/(1+x+x^2)^2+x^2*O(x^n)))^(1/2), n)} \\ Paul D. Hanna
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 20 2005
STATUS
approved