[go: up one dir, main page]

login
A006457
Number of elements in Z[ i ] whose 'smallest algorithm' is <= n.
(Formerly M3873)
3
1, 5, 17, 49, 125, 297, 669, 1457, 3093, 6457, 13309, 27201, 55237, 111689, 225101, 452689, 908885, 1822809, 3652701, 7315553, 14645349, 29311081, 58650733, 117342321, 234741877, 469565561, 939245693, 1878655105, 3757539461, 7515406473, 15031271565
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hester Graves, An Elementary Proof of the Minimal Euclidean Function on the Gaussian Integers, arXiv:2205.14043 [math.NT], 2022. See Table 1 p. 25.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
P. Samuel, About Euclidean rings, J. Alg., 19 (1971), 282-301.
FORMULA
a(n+5) - 4*a(n+4) + 3*a(n+3) + 6*a(n+2) - 10*a(n+1) + 4*a(n) = 0.
From Robert Israel, Aug 02 2016: (Start)
a(2k) = 14*4^k - 34*2^k + 8*k + 21.
a(2k+1) = 28*4^k - 48*2^k + 8*k + 25.
For n >= 3, a(n) == 5 + 4*n (mod 8). (End)
MAPLE
A006457:=(1+z+2*z^3)/(2*z-1)/(2*z^2-1)/(z-1)^2; # conjectured by Simon Plouffe in his 1992 dissertation
seq(op([14*4^k-34*2^k+8*k+21, 28*4^k-48*2^k+8*k+25]), k=0..50); # Robert Israel, Aug 02 2016
MATHEMATICA
CoefficientList[Series[(1+x+2x^3)/(2x-1)/(2x^2-1)/(x-1)^2, {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -3, -6, 10, -4}, {1, 5, 17, 49, 125}, 30] (* Harvey P. Dale, Jun 22 2011 *)
CROSSREFS
Sequence in context: A136303 A268783 A273384 * A115981 A083091 A176953
KEYWORD
nonn,easy,nice
AUTHOR
H. W. Lenstra, Jr.
STATUS
approved