[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005361
Product of exponents of prime factorization of n.
(Formerly M0063)
152
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1
OFFSET
1,4
COMMENTS
a(n) depends only on prime signature of n (cf. A025487, A052306). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
There was a comment here that said "a(n) is the number of nilpotents elements in the ring Z/nZ", but this is false, see A003557.
a(n) is the number of square-full divisors of n. a(n) is also the number of divisors d of n such that d and n have the same prime factors, i.e., A007947(d) = A007947(n). - Laszlo Toth, May 22 2009
Number of divisors u of n such that u|(u^n/n). Row lengths in triangle of A284318. - Juri-Stepan Gerasimov, Apr 05 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
Imanuel Chen and Michael Z. Spivey, Integral Generalized Binomial Coefficients of Multiplicative Functions, Preprint 2015; Summer Research Paper 238, Univ. Puget Sound.
P. Erdős and T. Motzkin, Problem 5735, Amer. Math. Monthly, 78 (1971), 680-681. (Incorrect solution!)
J. Knopfmacher, A prime-divisor function, Proc. Amer. Math. Soc., 40 (1973), 373-377.
H. N. Shapiro, Problem 5735, Amer. Math. Monthly, 97 (1990), 937.
D. Suryanarayana and R. Sitaramachandra Rao, The number of square-full divisors of an integer, Proc. Amer. Math. Soc., Vol. 34, No. 1 (1972), pp. 79-80.
FORMULA
n = Product (p_j^k_j) -> a(n) = Product (k_j).
Dirichlet g.f.: zeta(s)*zeta(2s)*zeta(3s)/zeta(6s).
Multiplicative with a(p^e) = e. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d dividing n} floor(rad(d)/rad(n)) where rad(n) is A007947. - Enrique Pérez Herrero, Nov 06 2009
For n > 1: a(n) = Product_{k=1..A001221(n)} A124010(n,k). - Reinhard Zumkeller, Aug 27 2011
a(n) = tau(n/rad(n)), where tau is A000005 and rad is A007947. - Anthony Browne, May 11 2016
a(n) = Sum_{k=1..n}(floor(cos^2(Pi*k^n/n))*floor(cos^2(Pi*n/k))). - Anthony Browne, May 11 2016
From Antti Karttunen, Mar 06 2017: (Start)
For all n >= 1, a(prime^n) = n, a(A002110(n)) = a(A005117(n)) = 1. [From Crossrefs section.]
a(1) = 1; for n > 1, a(n) = A067029(n) * a(A028234(n)).
(End)
Let (b(n)) be multiplicative with b(p^e) = -1 + ( (floor((e-1)/3)+floor(e/3)) mod 4 ) for p prime and e > 0, then b(n) is the Dirichlet inverse of (a(n)). - Werner Schulte, Feb 23 2018
Sum_{i=1..k} a(i) ~ (zeta(2)*zeta(3)/zeta(6)) * k (Suryanarayana and Sitaramachandra Rao, 1972). - Amiram Eldar, Apr 13 2020
More precise asymptotics: Sum_{k=1..n} a(k) ~ 315*zeta(3)*n / (2*Pi^4) + zeta(1/2)*zeta(3/2)*sqrt(n) / zeta(3) + 6*zeta(1/3)*zeta(2/3)*n^(1/3) / Pi^2 [Knopfmacher, 1973]. - Vaclav Kotesovec, Jun 13 2020
MAPLE
A005361 := proc(n)
local a, p ;
a := 1 ;
for p in ifactors(n)[2] do
a := a*op(2, p) ;
end do:
a ;
end proc:
seq(A005361(n), n=1..30) ; # R. J. Mathar, Nov 20 2012
# second Maple program:
a:= n-> mul(i[2], i=ifactors(n)[2]):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 18 2020
MATHEMATICA
Prepend[ Array[ Times @@ Last[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ]
Array[Times@@Transpose[FactorInteger[#]][[2]]&, 80] (* Harvey P. Dale, Aug 15 2012 *)
PROG
(PARI) for(n=1, 100, f=factor(n); print1(prod(i=1, omega(f), f[i, 2]), ", ")) \\ edited by M. F. Hasler, Feb 18 2020
(PARI) a(n)=factorback(factor(n)[, 2]) \\ Charles R Greathouse IV, Nov 07 2014
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X + X^2)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
(Haskell)
a005361 = product . a124010_row -- Reinhard Zumkeller, Jan 09 2012
(Scheme) (define (A005361 n) (if (= 1 n) 1 (* (A067029 n) (A005361 (A028234 n))))) ;; Antti Karttunen, Mar 06 2017
(Python)
from math import prod
from sympy import factorint
def a(n): return prod(factorint(n).values())
print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Jul 04 2022
CROSSREFS
Cf. A340065 (Dgf at s=2).
Sequence in context: A375136 A212180 A091050 * A303915 A322885 A292582
KEYWORD
nonn,easy,nice,mult
STATUS
approved