OFFSET
1,1
COMMENTS
The next term consists of the first 16208 digits of Pi and is too large to show here (see A060421). Ed T. Prothro found this probable prime in 2001.
A naive probabilistic argument suggests that the sequence is infinite. - Michael Kleber, Jun 23 2004
REFERENCES
M. Gardner, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Gardner, Letter to N. J. A. Sloane, Nov 16 1979.
Ed T. Prothro, How I Found the Next Pi Prime.
Eric Weisstein's World of Mathematics, Pi-Prime.
FORMULA
a(n) = floor(10^(A060421(n)-1)*A000796), where A000796 is the constant Pi = 3.14159... . - M. F. Hasler, Sep 02 2013
MAPLE
Digits := 130; n0 := evalf(Pi); for i from 1 to 120 do t1 := trunc(10^i*n0); if isprime(t1) then print(t1); fi; od:
MATHEMATICA
a = {}; Do[k = Floor[Pi 10^n]; If[PrimeQ[k], AppendTo[a, k]], {n, 0, 160}]; a (* Artur Jasinski, Mar 26 2008 *)
nn=1000; With[{pidigs=RealDigits[Pi, 10, nn][[1]]}, Select[Table[FromDigits[ Take[pidigs, n]], {n, nn}], PrimeQ]] (* Harvey P. Dale, Sep 26 2012 *)
PROG
(PARI) c=Pi; for(k=0, precision(c), isprime(c\.1^k) & print1(c\.1^k, ", ")) \\ - M. F. Hasler, Sep 01 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved