[go: up one dir, main page]

login
A005767
Solutions n to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).
11
3, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
OFFSET
1,1
COMMENTS
All numbers not equal to some 2^k or 5*2^k [Fraser and Gordon]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 28 2006
REFERENCES
T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.
LINKS
O. Fraser and B. Gordon, On representing a square as the sum of three squares, Amer. Math. Monthly, 76 (1969), 922-923.
FORMULA
a(n) = n + 2*log_2(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A169580(n) = a(n)^2. - R. J. Mathar, Aug 15 2023
MATHEMATICA
z=100; lst={}; Do[a2=a^2; Do[b2=b^2; Do[c2=c^2; e2=a2+b2+c2; e=Sqrt[e2]; If[IntegerQ[e]&&e<=z, AppendTo[lst, e]], {c, b, 1, -1}], {b, a, 1, -1}], {a, 1, z}]; Union@lst (* Vladimir Joseph Stephan Orlovsky, May 19 2010 *)
PROG
(PARI) is(n)=if(n%5, n, n/5)==2^valuation(n, 2) \\ Charles R Greathouse IV, Mar 12 2013
CROSSREFS
Complement of A094958. Cf. A169580, A000378, A000419, A000408.
For primitive solutions see A005818.
Sequence in context: A288938 A282140 A071530 * A085837 A176237 A187811
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Ralph Peterson (ralphp(AT)library.nrl.navy.mil)
EXTENSIONS
More terms from T. D. Noe, Mar 04 2010
STATUS
approved