[go: up one dir, main page]

login
A003072
Numbers that are the sum of 3 positive cubes.
85
3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434
OFFSET
1,1
COMMENTS
A119977 is a subsequence; if m is a term then there exists at least one k>0 such that m-k^3 is a term of A003325. - Reinhard Zumkeller, Jun 03 2006
A025456(a(n)) > 0. - Reinhard Zumkeller, Apr 23 2009
Davenport proved that a(n) << n^(54/47 + e) for every e > 0. - Charles R Greathouse IV, Mar 26 2012
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..12955 (first 1000 terms from T. D. Noe)
H. Davenport, Sums of three positive cubes, J. London Math. Soc., 25 (1950), 339-343. Coll. Works III p. 999.
Eric Weisstein's World of Mathematics, Cubic Number
FORMULA
{n: A025456(n) >0}. - R. J. Mathar, Jun 15 2018
EXAMPLE
a(11) = 73 = 1^3 + 2^3 + 4^3, which is sum of three cubes.
a(15) = 99 = 2^3 + 3^3 + 4^3, which is sum of three cubes.
MAPLE
isA003072 := proc(n)
local x, y, z;
for x from 1 do
if 3*x^3 > n then
return false;
end if;
for y from x do
if x^3+2*y^3 > n then
break;
end if;
if isA000578(n-x^3-y^3) then
return true;
end if;
end do:
end do:
end proc:
for n from 1 to 1000 do
if isA003072(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Jan 23 2016
MATHEMATICA
Select[Range[435], (p = PowersRepresentations[#, 3, 3]; (Select[p, #[[1]] > 0 && #[[2]] > 0 && #[[3]] > 0 &] != {})) &] (* Jean-François Alcover, Apr 29 2011 *)
With[{upto=500}, Select[Union[Total/@Tuples[Range[Floor[Surd[upto-2, 3]]]^3, 3]], #<=upto&]] (* Harvey P. Dale, Oct 25 2021 *)
PROG
(PARI) sum(n=1, 11, x^(n^3), O(x^1400))^3 /* Then [i|i<-[1..#%], polcoef(%, i)] gives the list of powers with nonzero coefficient. - M. F. Hasler, Aug 02 2020 */
(PARI) list(lim)=my(v=List(), k, t); lim\=1; for(x=1, sqrtnint(lim-2, 3), for(y=1, min(sqrtnint(lim-x^3-1, 3), x), k=x^3+y^3; for(z=1, min(sqrtnint(lim-k, 3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
(Haskell)
a003072 n = a003072_list !! (n-1)
a003072_list = filter c3 [1..] where
c3 x = any (== 1) $ map (a010057 . fromInteger) $
takeWhile (> 0) $ map (x -) $ a003325_list
-- Reinhard Zumkeller, Mar 24 2012
CROSSREFS
Subsequence of A004825.
Cf. A003325, A024981, A057904 (complement), A010057, A000578, A023042 (subsequence of cubes).
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers: A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Sequence in context: A356058 A342280 A024981 * A025395 A047702 A219726
KEYWORD
nonn,easy,nice
EXTENSIONS
Incorrect program removed by David A. Corneth, Aug 01 2020
STATUS
approved