[go: up one dir, main page]

login
A003024
Number of acyclic digraphs (or DAGs) with n labeled nodes.
(Formerly M3113)
71
1, 1, 3, 25, 543, 29281, 3781503, 1138779265, 783702329343, 1213442454842881, 4175098976430598143, 31603459396418917607425, 521939651343829405020504063, 18676600744432035186664816926721, 1439428141044398334941790719839535103, 237725265553410354992180218286376719253505
OFFSET
0,3
COMMENTS
Also the number of n X n real (0,1)-matrices with all eigenvalues positive. - Conjectured by Eric W. Weisstein, Jul 10 2003 and proved by McKay et al. 2003, 2004
Also the number of n X n real (0,1)-matrices with permanent equal to 1, up to permutation of rows/columns, cf. A089482. - Vladeta Jovovic, Oct 28 2009
Also the number of nilpotent elements in the semigroup of binary relations on [n]. - Geoffrey Critzer, May 26 2022
From Gus Wiseman, Jan 01 2024: (Start)
Also the number of sets of n nonempty subsets of {1..n} such that there is a unique way to choose a different element from each. For example, non-isomorphic representatives of the a(3) = 25 set-systems are:
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
These set-systems have ranks A367908, subset of A367906, for multisets A368101.
The version for no ways is A368600, any length A367903, ranks A367907.
The version for at least one way is A368601, any length A367902.
(End)
REFERENCES
Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 310.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 19, Eq. (1.6.1).
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P Stanley, Enumerative Combinatorics I, 2nd. ed., p. 322.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..77 (first 41 terms from T. D. Noe)
T. E. Allen, J. Goldsmith, and N. Mattei, Counting, Ranking, and Randomly Generating CP-nets, 2014.
Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
Eunice Y.-J. Chen, A. Choi, and A. Darwiche, On Pruning with the MDL Score, JMLR: Workshop and Conference Proceedings vol 52, 98-109, 2016.
S. Engstrom, Random acyclic orientations of graphs, Master's thesis written at the department of Mathematics at the Royal Institute of Technology (KTH) in Stockholm, Jan. 2013.
Zehao Jin, Mario Pasquato, Benjamin L. Davis, Tristan Deleu, Yu Luo, Changhyun Cho, Pablo Lemos, Laurence Perreault-Levasseur, Yoshua Bengio, Xi Kang, Andrea Valerio Maccio, and Yashar Hezaveh, A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution, arXiv:2410.00965 [astro-ph.GA], 2024. See p. 33.
Zehao Jin, Mario Pasquato, Benjamin L. Davis, Andrea V. Macciò, and Yashar Hezaveh, Beyond Causal Discovery for Astronomy: Learning Meaningful Representations with Independent Component Analysis, arXiv:2410.14775 [astro-ph.GA], 2024. See pp. 2, 4, 10.
Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See p. 33.
Jack Kuipers and Giusi Moffa, Uniform generation of random acyclic digraphs, arXiv preprint arXiv:1202.6590 [stat.CO], 2012. - N. J. A. Sloane, Sep 14 2012
Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Songtao Guo, and Yuanyuan Yang, A Survey of IoT Applications in Blockchain Systems: Architecture, Consensus and Traffic Modeling, ACM Computing Surveys (CSUR, 2020) Vol. 53, No. 1, Article No. 18.
B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, J. Integer Sequences, 7 (2004), #04.3.3.
B. D. McKay, F. E. Oggier, G. F. Royle, N. J. A. Sloane, I. M. Wanless and H. S. Wilf, Acyclic digraphs and eigenvalues of (0,1)-matrices, arXiv:math/0310423 [math.CO], Oct 28 2003.
A. Motzek and R. Möller, Exploiting Innocuousness in Bayesian Networks, Preprint 2015.
Yisu Peng, Y. Jiang, and P. Radivojac, Enumerating consistent subgraphs of directed acyclic graphs: an insight into biomedical ontologies, arXiv preprint arXiv:1712.09679 [cs.DS], 2017.
J. Peters, J. Mooij, D. Janzing, and B. Schölkopf, Causal Discovery with Continuous Additive Noise Models, arXiv preprint arXiv:1309.6779 [stat.ML], 2013.
R. W. Robinson, Enumeration of acyclic digraphs, Manuscript. (Annotated scanned copy)
V. I. Rodionov, On the number of labeled acyclic digraphs, Disc. Math. 105 (1-3) (1992) 319-321
I. Shpitser, T. S. Richardson, J. M. Robins and R. Evans, Parameter and Structure Learning in Nested Markov Models, arXiv preprint arXiv:1207.5058 [stat.ML], 2012.
I. Shpitser, R. J. Evans, T. S. Richardson, and J. M. Robins, Introduction to nested Markov models, Behaviormetrika, Behaviormetrika Vol. 41, No. 1, 2014, 3-39.
R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
Christian Toth, Christian Knoll, Franz Pernkopf, and Robert Peharz, Rao-Blackwellising Bayesian Causal Inference, arXiv:2402.14781 [cs.LG], 2024.
Sumanth Varambally, Yi-An Ma, and Rose Yu, Discovering Mixtures of Structural Causal Models from Time Series Data, arXiv:2310.06312 [cs.LG], 2023.
S. Wagner, Asymptotic enumeration of extensional acyclic digraphs, in Proceedings of the SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO12).
Daniel Waxman, Kurt Butler, and Petar M. Djuric, Dagma-DCE: Interpretable, Non-Parametric Differentiable Causal Discovery, arXiv:2401.02930 [cs.LG], 2024.
Eric Weisstein's World of Mathematics, (0,1)-Matrix
Eric Weisstein's World of Mathematics, Acyclic Digraph
Eric Weisstein's World of Mathematics, Positive Eigenvalued Matrix
Eric Weisstein's World of Mathematics, Weisstein's Conjecture
Jun Wu and Mathias Drton, Partial Homoscedasticity in Causal Discovery with Linear Models, arXiv:2308.08959 [math.ST], 2023.
FORMULA
a(0) = 1; for n > 0, a(n) = Sum_{k=1..n} (-1)^(k+1)*C(n, k)*2^(k*(n-k))*a(n-k).
1 = Sum_{n>=0} a(n)*exp(-2^n*x)*x^n/n!. - Vladeta Jovovic, Jun 05 2005
a(n) = Sum_{k=1..n} (-1)^(n-k)*A046860(n,k) = Sum_{k=1..n} (-1)^(n-k)*k!*A058843(n,k). - Vladeta Jovovic, Jun 20 2008
1 = Sum_{n=>0} a(n)*x^n/(1 + 2^n*x)^(n+1). - Paul D. Hanna, Oct 17 2009
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + 2^n*x)^(n+m) for m>=1. - Paul D. Hanna, Apr 01 2011
log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + 2^n*x)^n. - Paul D. Hanna, Apr 01 2011
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/E(-x) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + x + 3*x^2/(2!*2) + 25*x^3/(3!*2^3) + 543*x^4/(4!*2^6) + ... (Stanley). Cf. A188457. - Peter Bala, Apr 01 2013
a(n) ~ n!*2^(n*(n-1)/2)/(M*p^n), where p = 1.488078545599710294656246... is the root of the equation Sum_{n>=0} (-1)^n*p^n/(n!*2^(n*(n-1)/2)) = 0, and M = Sum_{n>=1} (-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)) = 0.57436237330931147691667... Both references to the article "Acyclic digraphs and eigenvalues of (0,1)-matrices" give the wrong value M=0.474! - Vaclav Kotesovec, Dec 09 2013 [Response from N. J. A. Sloane, Dec 11 2013: The value 0.474 has a typo, it should have been 0.574. The value was taken from Stanley's 1973 paper.]
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 10*x^3 + 146*x^4 + 6010*x^5 + ... appears to have integer coefficients (cf. A188490). - Peter Bala, Jan 14 2016
EXAMPLE
For n = 2 the three (0,1)-matrices are {{{1, 0}, {0, 1}}, {{1, 0}, {1, 1}}, {{1, 1}, {0, 1}}}.
MAPLE
p:=evalf(solve(sum((-1)^n*x^n/(n!*2^(n*(n-1)/2)), n=0..infinity) = 0, x), 50); M:=evalf(sum((-1)^(n+1)*p^n/((n-1)!*2^(n*(n-1)/2)), n=1..infinity), 40); # program for evaluation of constants p and M in the asymptotic formula, Vaclav Kotesovec, Dec 09 2013
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = Sum[ -(-1)^k * Binomial[n, k] * 2^(k*(n-k)) * a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 13}](* Jean-François Alcover, May 21 2012, after PARI *)
Table[2^(n*(n-1)/2)*n! * SeriesCoefficient[1/Sum[(-1)^k*x^k/k!/2^(k*(k-1)/2), {k, 0, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2015 *)
Table[Length[Select[Subsets[Subsets[Range[n]], {n}], Length[Select[Tuples[#], UnsameQ@@#&]]==1&]], {n, 0, 5}] (* Gus Wiseman, Jan 01 2024 *)
PROG
(PARI) a(n)=if(n<1, n==0, sum(k=1, n, -(-1)^k*binomial(n, k)*2^(k*(n-k))*a(n-k)))
(PARI) {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+2^k*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Oct 17 2009
CROSSREFS
Cf. A086510, A081064 (refined by # arcs), A307049 (by # descents).
Cf. A055165, which counts nonsingular {0, 1} matrices and A085656, which counts positive definite {0, 1} matrices.
Cf. A188457, A135079, A137435 (acyclic 3-multidigraphs), A188490.
For a unique sink we have A003025.
The unlabeled version is A003087.
These are the reverse-alternating sums of rows of A046860.
The weakly connected case is A082402.
A reciprocal version is A334282.
Row sums of A361718.
Sequence in context: A136173 A243440 A306783 * A224679 A213599 A179473
KEYWORD
nonn,easy,nice,changed
STATUS
approved