[go: up one dir, main page]

login
A002307
Consecutive quadratic residues mod p: a(n) is the maximal number of positive reduced quadratic residues which appear consecutively for n-th prime.
(Formerly M0418 N0160)
6
1, 1, 1, 2, 3, 2, 2, 4, 4, 4, 4, 4, 3, 5, 4, 3, 5, 5, 6, 6, 4, 6, 7, 4, 4, 7, 7, 6, 5, 5, 7, 8, 6, 5, 4, 7, 6, 6, 6, 6, 6, 6, 6, 4, 7, 6, 7, 7, 7, 5, 6, 6, 6, 7, 6, 7, 8, 7, 10, 6, 9, 9, 7, 10, 5, 5, 8, 5, 8, 6, 6, 8, 9, 6, 8, 8, 8, 5, 7, 6, 8, 7, 6, 7, 10, 8, 8, 5, 8, 8, 11, 12, 8, 8, 10, 8, 9, 8, 10, 7, 9, 9, 10, 10, 7, 6, 9
OFFSET
1,4
COMMENTS
When prime(n) == 3 (mod 4), then a(n) = A002308(n). - T. D. Noe, Apr 03 2007
A048280(n) is defined similarly, except that reduced quadratic residues equal to 0 are also included. - Jonathan Sondow, Jul 20 2014
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. A. Bennett, Consecutive quadratic residues, Bull. Amer. Math. Soc., 32 (1926), 283-284.
FORMULA
a(n) <= A048280(n) < 2*sqrt(prime(n)). - Jonathan Sondow, Jul 20 2014
MATHEMATICA
f[l_, a_] := Module[{A = Split[l], B}, B = Last[ Sort[ Cases[A, x : {a ..} :> {Length[x], Position[A, x][[1, 1]]}]]]; {First[B], Length[ Flatten[ Take[A, Last[B] - 1]]] + 1}]; g[n_] := f[ JacobiSymbol[ Range[ Prime[n] - 1], Prime[n]], 1][[1]]; Table[ g[n], {n, 2, 102}] (* Robert G. Wilson v, Jul 28 2004 *)
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from David W. Wilson
STATUS
approved