[go: up one dir, main page]

login
A002211
Continued fraction for Khintchine's constant.
(Formerly M0118 N0047)
14
2, 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, 1, 1, 90, 2, 1, 12, 1, 1, 1, 1, 5, 2, 6, 1, 6, 3, 1, 1, 2, 5, 2, 1, 2, 1, 1, 4, 1, 2, 2, 3, 2, 1, 1, 4, 1, 1, 2, 5, 2, 1, 1, 3, 29, 8, 3, 1, 4, 3, 1, 10, 50, 1, 2, 2, 7, 6, 2, 2, 16, 4, 4, 2, 2, 3, 1, 1, 7, 1, 5, 1, 2, 1, 5, 3, 1
OFFSET
0,1
COMMENTS
Incrementally larger terms in the continued fraction for Khintchine's constant: 1, 2, 5, 10, 24, 90, 770, 941, 11759, 54097, 231973, ..., and they occur at 1, 2, 3, 10, 15, 23, 104, 1701, 2445, 18995, 60037, ... - Robert G. Wilson v, Dec 09 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. Shanks and J. W. Wrench, Jr., Khintchine's constant, Amer. Math. Monthly, 66 (1959), 276-279.
J. W. Wrench, Further evaluation of Khintchine's constant, Math. Comp., 14 (1960), 370-371.
G. Xiao, Contfrac
Eric Weisstein's World of Mathematics, Khinchin's Constant Continued Fraction
EXAMPLE
2.685452001065306445309714835... = 2 + 1/(1 + 1/(2 + 1/(5 + 1/(1 + ...))))
[a_0; a_1, a_2, ...] = [2, 1, 2, ...]
MATHEMATICA
ContinuedFraction[Khinchin, 100]
CROSSREFS
Cf. A002210.
Sequence in context: A371136 A245841 A011404 * A308947 A175011 A211700
KEYWORD
cofr,nonn,nice,easy
EXTENSIONS
More terms from Robert G. Wilson v, Oct 31 2001
STATUS
approved