[go: up one dir, main page]

login
A002112
Glaisher's H numbers.
(Formerly M3135 N1272)
4
3, 33, 903, 46113, 3784503, 455538993, 75603118503, 16546026500673, 4616979073434903, 1599868423237443153, 674014138103352845703, 339274210193051498798433, 201097637653063767131142903, 138634566390566081044811718513
OFFSET
1,1
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., 31 (1899), 216-235.
Michael E. Hoffman, Derivative polynomials, Euler polynomials, and associated integer sequences, The Electronic Journal of Combinatorics 6.1 (1999).
FORMULA
H(n) = 2^(2n+1)*I(n), where e.g.f. for (-1)^n*I(n) is (3/2)/(1+exp(x)+exp(-x)) (see A047788, A047789).
H(n) = 3*A000436(n)/2^(2n+1) = 3*A002114(n). - Philippe Deléham, Jan 17 2004
E.g.f.: E(x) = 3*x^2/(G(0)-x^2); G(k) = 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step ). - Sergei N. Gladkovskii, Jan 03 2012
If E(x) = Sum_{k>=0} a(k+1)*x^(2k+2), then A002112(k) = a(k+1)*(2*k+2)!. - Sergei N. Gladkovskii, Jan 09 2012
From Vaclav Kotesovec, May 05 2020: (Start)
a(n) = sqrt(3) * (2*n)! * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (2*Pi)^(2*n+1).
a(n) = (-1)^(n+1) * sqrt(3) * Bernoulli(2*n) * (zeta(2*n+1, 1/6) - zeta(2*n+1, 5/6)) / (4*Pi*zeta(2*n)). (End)
MATHEMATICA
e[0] = 1; e[n_] := e[n] = (-1)^n*(1 - Sum[(-1)^i*Binomial[2n, 2i]*3^(2n-2i)*e[i], {i, 0, n-1}]); a[n_] := 3*e[n]/2^(2n+1); Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Jan 31 2012, after Philippe Deléham *)
CROSSREFS
Sequence in context: A124432 A234715 A126466 * A055549 A086894 A255930
KEYWORD
nonn,nice,easy
STATUS
approved