[go: up one dir, main page]

login
A000385
Convolution of A000203 with itself.
(Formerly M4113 N1708)
30
1, 6, 17, 38, 70, 116, 185, 258, 384, 490, 686, 826, 1124, 1292, 1705, 1896, 2491, 2670, 3416, 3680, 4602, 4796, 6110, 6178, 7700, 7980, 9684, 9730, 12156, 11920, 14601, 14752, 17514, 17224, 21395, 20406, 24590, 24556, 28920, 27860, 34112, 32186, 38674, 37994, 43980, 42136, 51646, 47772, 56749, 55500, 64316, 60606, 73420, 67956, 80500, 77760, 88860, 83810, 102284, 92690, 108752, 105236, 120777, 112672, 135120, 123046, 145194, 138656, 157512, 146580, 177515, 159396, 185744, 179122
OFFSET
1,2
COMMENTS
a(5*n+1)==0 (mod 5) and a(7*n+6)==0 (mod 7). See Bonciocat link. - Michel Marcus, Nov 10 2016
Convolution of A340793 and A024916. - Omar E. Pol, Feb 17 2021
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.
LINKS
Nicolae Ciprian Bonciocat, Congruences for the Convolution of Divisor sum function, Bull. Greek Math. Soc., p. 19-29, Vol 47, 2003.
S. Ramanujan, On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, 22, No.9 (1916), 169- 184 (see Table IV, line 1).
J. Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39. [Annotated scanned copy]
FORMULA
a(n) = Sum_{k=1..n} A000203(k)*A000203(n-k+1).
G.f.: (1/x)*(Sum_{k>=1} k*x^k/(1 - x^k))^2. - Ilya Gutkovskiy, Nov 10 2016
a(n) = (5/12)*A001158(n+1) - ((5+6*n)/12)*A000203(n+1). - Robert Israel, Sep 17 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 864. - Vaclav Kotesovec, Apr 02 2019
MAPLE
f:= n -> 5/12*numtheory:-sigma[3](n+1)-(5+6*n)/12*numtheory:-sigma(n+1):
map(f, [$1..100]); # Robert Israel, Sep 17 2018
MATHEMATICA
a[n_] := Sum[DivisorSigma[1, k] DivisorSigma[1, n-k+1], {k, 1, n}];
Array[a, 100] (* Jean-François Alcover, Aug 01 2018 *)
PROG
(Haskell)
a000385 n = sum $ zipWith (*) sigmas $ reverse sigmas where
sigmas = take n a000203_list
-- Reinhard Zumkeller, Sep 20 2011
(PARI) a(n) = sum(k=1, n, sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Nov 10 2016
(Python)
from sympy import factorint
def A000385(n):
f = factorint(n+1).items()
return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p, e in f)-(5+6*n)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12 # Chai Wah Wu, Jul 25 2024
CROSSREFS
Column k=2 of A319083 (shifted).
Sequence in context: A212980 A132127 A023621 * A192756 A004799 A085278
KEYWORD
nonn,easy,look
EXTENSIONS
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved