[go: up one dir, main page]

login
A000985
Number of n X n symmetric matrices with nonnegative entries and all row sums 2.
(Formerly M2907 N1168)
9
1, 1, 3, 11, 56, 348, 2578, 22054, 213798, 2313638, 27627434, 360646314, 5107177312, 77954299144, 1275489929604, 22265845018412, 412989204564572, 8109686585668956, 168051656468233972, 3664479286118269972, 83868072451846938336, 2009964340465840802576
OFFSET
0,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.7.
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 584
H. Gupta, Enumeration of symmetric matrices, Duke Math. J., 35 (1968), vol 3, 653-659.
H. Gupta, Enumeration of symmetric matrices (annotated scanned copy)
Tomislav Došlic, Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019). - From N. J. A. Sloane, May 01 2012
FORMULA
E.g.f.: (1-x)^(-1/2)*exp(x^2/4 + x/(2*(1-x))).
a(n) ~ n^n*exp(sqrt(2*n)-n)/sqrt(2) * (1-5/(24*sqrt(2*n))). - Vaclav Kotesovec, Jul 29 2013
Recurrence: 2*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-2)*(n-1)*a(n-2) - 2*(n-2)*(n-1)*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Jul 29 2013
MATHEMATICA
max = 21; egf[x_] := (1-x)^(-1/2)*Exp[x^2/4 + x/(2*(1-x))]; CoefficientList[ Series[ egf[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 25 2011 *)
CROSSREFS
Cf. A000986.
Sequence in context: A302147 A007841 A036760 * A207433 A094611 A052442
KEYWORD
nonn,nice,easy
STATUS
approved