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Abstract?.

Given a finite nonempty sequence S of integers, write it as XY*, where Y* is a power of greatest
exponent that is a suffix of S: this k is the curling number of S. The curling number conjecture is
that if one starts with any initial sequence S, and extends it by repeatedly appending the curling
number of the current sequence, the sequence will eventually reach 1. The conjecture remains open.
In this paper we discuss the special case when S consists just of 2’s and 3’s. Even this case remains
open, but we determine how far a sequence consisting of n 2’s and 3’s can extend before reaching a
1, conjecturally for n < 80. We investigate several related combinatorial problems, such as finding
c¢(n, k), the number of binary sequences of length n and curling number &, and ¢(n, %), the number
of sequences of length n which extend for ¢ steps before reaching a 1. A number of interesting
combinatorial problems remain unsolved.

1 The curling number conjecture

Given a finite nonempty sequence S of integers, write it as S = XY*, where X and Y are sequences
of integers and Y* is a power of greatest exponent that is a suffix of S: this k is the curling number
of S, denoted by cn(S). X may be the empty sequence €; there may be several choices for Y,
although the shortest such Y which achieves k (which as we shall see in §3.1 is primitive) is unique.

For example, if § = 0122122122, we could write it as XY?, where X = 01221221 and
Y =2, or as XY3, where X =0 and Y = 122. The latter representation is to be preferred, since
it has k = 3, and as k = 4 is impossible, the curling number of this S is 3.

The following conjecture was stated by van de Bult et al. [2]:

Conjecture 1. The curling number conjecture. If one starts with any initial sequence of integers
S, and extends it by repeatedly appending the curling number of the current sequence, the sequence
will eventually reach 1.

!To whom correspondence should be addressed.
2A preliminary report on the work in Section 2 was given in [3]
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In other words, if Sp = S is any finite nonempty sequence of integers, and we define Sy,4+1 to
be the concatenation
Smt1 = Sm cen(Sy,) form >0, (1)

then the conjecture is that for some ¢ > 0 we will have cn(S;) = 1. The smallest such ¢ is the tail
length of Sy, denoted by 7(Sp) (and we set 7(Sy) = oo if the conjecture is false).

For example, suppose we start with S = 2323. By taking X =€, Y = 23, we have Sy = Y2, so
cn(Sp) = 2, and we get S; =23232. By taking X =2, Y =32 we get cn(S1) =2, S =232322.
By taking X =2323,Y =2 we get cn(S2) = 2, S3 =2323222. Again taking X =2323,Y =2
we get cn(S3) = 3, Sy = 23232223. Now, unfortunately, it is impossible to write Sy = XY*
with & > 1, so en(Sy) = 1, S5 = 232322231, and we have reached a 1, as predicted by the
conjecture. For this example, 7(Sy) = 4. (If we continue the sequence from this point, it joins
Gijswijt’s sequence, discussed in §5.)

Some of the proofs in van de Bult et al. [2] could be shortened and the results strengthened if
the conjecture were known to be true. All the available evidence suggests that the conjecture is
true, but it has so far resisted all attempts to prove it.

In this paper we report on some extensive investigations into the case when the starting sequence
consists of 2’s and 3’s (although even in this special case the conjecture remains open).

In Section 2 we study how far a starting sequence consisting of n 2’s and 3’s can extend before
reaching a 1. Call the maximum such length Q(n). That is, Q(n) is the maximal value of the tail
length 7(Sp) taken over all sequences Sy of 2’s and 3’s of length n. We determine (n) for all
n < 48, and conjecturally for all n < 80 (Table 1 and Figure 1). The data suggests some properties
that should be possessed by especially good starting sequences (Properties P2, P3, P4 in §2.2).
Although we have not found any algebraic construction for good starting sequences, Section 2.3
describes a method which sometimes succeeds in building starting sequences of greater length. The
algorithm which allowed us to extend the search to length 80 is discussed in §2.4. We would not
be surprised if the conjecture in this special case turns out to be a consequence of known results
on the unavoidability of patterns in long binary sequences—we discuss this briefly in §2.5.

Section 3 is devoted to the combinatorial question: what is the number c¢(n, k) of binary se-
quences of length n and curling number k£? This seems to be a surprisingly difficult problem, and
we have succeeded only in relating ¢(n, k) to two subsidiary quantities: p(n, k), the number of such
sequences that are primitive, and p’(n, k), the number that are both primitive and robust (see
§3.1). The main results of this section are the formulas for ¢(n, k) in Theorems 8 and 20. With
their help we are able to enumerate the curling numbers of all binary sequences of length n < 104.
The resulting table can be seen in entry A216955% in [9]. The number of binary sequences with
curling number 1, ¢(n, 1) (A122536), is especially interesting and is discussed in §3.4. Some further
recurrences given there enable us to compute ¢(n, 1) for n < 200 (although we still do not know an
explicit formula). We make frequent use of the classical Fine-Wilf theorem, and it and two other
preliminary results are given in §3.2. The differences d(n, k) := 2¢(n—1,k) — c(n, k) show the
structure of the ¢(n, k) table more clearly than the numbers ¢(n, k) themselves, and are the subject
of §3.6.

In Section 4, we study the number ¢(n,i) of sequences of length n with tail length i, where
0 <i < Q(n). By direct search we have determined t(n, i) for n < 48 (A217209), although without
finding any recurrences (except for t(n,0), which is the same as ¢(n, 1)). The terms in each row of
the t(n,7) table occur in clumps, at least for n < 48. In §4.1 and §4.2 we investigate some statistics
of the t(n,i) table, although we are a long way from finding a model which explains the clumps.

3Throughout this article, six-digit numbers prefixed by A refer to entries in the OEIS [9].
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Sections 4.3, 4.4, 4.5 discuss some combinatorial questions related to tail lengths. If the starting
sequence Sy is sufficiently long, it seems plausible that prefixing Sy with a 2 or 3 is unlikely to
decrease the tail length. If one of these prefixes decreases the tail length, we call Sy rotten, and if
both prefixes 2 and 3 decrease the tail length we call it doubly rotten. Rotten sequences certainly
exist, but up to length 34 there are no doubly rotten sequences, and we conjecture than none
exist of any length (see Conjecture 22). If this conjecture were true, it would explain a certain
phenomenon that we observed in §2.2, and it would also imply that Q(n + 1) > Q(n) for all n,
something that we do not know at present.

In Section 5 we briefly describe Gijswijt’s sequence (A090822), which was the starting point for
this investigation. The last section summarizes the open problems mentioned in the paper.

Notation Since the starting sequence S can be any sequence of integers, it seems appropriate in
this paper to speak about “sequences” rather than “words” over some alphabet. However, we will
make use of certain terminology (such as “prefix”, “suffix”) from formal language theory (cf. [7]).

Sequences will be denoted by upper case Latin letters. S¥ means SS---S, where S is repeated
k times. The length of S is denoted by |S|. € denotes the empty sequence.

Sets of sequences will be denoted by script letters (e.g., C(n, k)) and their cardinalities by the
corresponding lower case Latin letters (e.g., c¢(n, k)). Greek letters and other lower case Latin letters
will also denote numbers. The symbol # denotes the cardinality of a set.

The curling number of S is denoted by cn(S). For a starting sequence Sy := s3 89 -+ s, of
length n, where the s; are arbitrary integers, we define S,,4+1 to be the concatenation S, cn(Sy,) =
S1 ++ Spam41 for m > 0. If en(S;) = 1 for some ¢ > 0, then we call the smallest such ¢ the tail
length of Sy, denoted by 7(Sp), and the corresponding sequence S€) .= S, =1 --- spyq is the
extension of Sp. If no such t exists, then we set 7(Sp) = oo, 5(€) = S (and the curling number
conjecture would be false).

2 Sequences of 2’s and 3’s

2.1 Maximal tail length Q(n)

One way to approach the conjecture is to consider the simplest nontrivial case, where the initial
sequence Sy contains only 2’s and 3’s, and see how far such a sequence can extend using the rule
(1) before reaching a 1. Perhaps if one were sufficiently clever, one could invent a starting sequence
that would never reach 1, which would disprove the conjecture. Of course it cannot reach a number
greater than 3, either, for the first time this happens the next term will be 1. So the sequence must
remain bounded between 2 and 3. Unfortunately, even this apparently simple case has resisted our
attempts to solve it. At the end of this section (see §2.5) we will mention some slight evidence that
suggests the conjecture is true. First we report on our numerical experiments.

Let (n) denote the maximal tail length that can be achieved before a 1 appears, for any
starting sequence Sy consisting of n 2’s and 3’s. If a 1 is never reached, we set Q(n) = oo. The
curling number conjecture would imply 2(n) < oo for all n.

By direct search, we have found Q(n) for all n < 48. (The values for n < 30 were given in [2].)
The results are shown in Table 1 and Figure 1, together with lower bounds (which we conjecture
are in fact equal to Q(n)) for 49 < n < 80. The values of Q(n) also form sequence A217208 in [9].

In [2], before we began computing 2(n), we did not know how fast it would grow—would it be a
polynomial, exponential, or other function of n? Even now we still do not know, since we have only
limited data. But up to n = 48, and probably up to n = 80, 2(n) is a piecewise constant function
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n] 1 2 3 4 5 6 7 8 9 10 11 12
Qn)| 0 2 2 4 4 8 8 53 59 60 112 112
n| 13 14 15 16 17 18 19 20 21 22 23 24
Q(n) | 112 118 118 118 118 118 119 119 119 120 120 120
n| 25 26 27 28 29 30 31 32 33 34 35 36
Q(n) | 120 120 120 120 120 120 120 120 120 120 120 120
n| 37 38 39 40 41 42 43 44 45 46 47 48
Q(n) | 120 120 120 120 120 120 120 120 120 120 120 131
n| 49 50 51 52 53 54 55 56 57 58 59 60
Q(n) | 131 131 131 131 131 131 131 131 131 131 131 131
n| 61 62 63 64 65 66 67 68 69 70 71 72
Q(n) | 131 131 131 131 131 131 131 132 132 132 132 132
n| 73 74 75 76 77 78 79 80
Q(n) | 132 132 132 133 173 173 173 173

Table 1: Lower bounds on €2(n), the maximal tail length that can be achieved before a 1 appears,
for any starting sequence Sy consisting of n 2’s and 3’s. Entries for n < 48 are known to be exact;
the other entries are conjectured to be exact.
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Figure 1: Scatter-plot of lower bounds on ©(n), the maximal tail length that can be achieved before
a 1 appears, for any starting sequence Sy consisting of n 2’s and 3’s. Entries for n < 48 are known
to be exact; the other entries are conjectured to be exact.

of n. There are occasional jump points, where Q(n) > Q(n — 1), but in between jump points ©(n)
does not change. Of course this piecewise constant behavior is not incompatible with polynomial
or exponential growth, if the jump points are close enough together, but up to n = 80 this seems



not to be the case. There are long stretches where 2(n) is flat. A probabilistic argument will be
given in §4 which suggests (not very convincingly) that, on the average, Q(n) may be roughly ¢; n,
for a constant ¢; ~ 1.34. Up to n = 49, Q(n) never decreases, although we cannot prove that this
is always true (see §4.3).

The jump points are at n = 1,2,4,6,8,9,10,11,14,19,22,48 and we believe the next three
values are 68, 76 and 77 (A160766).

2.2  Properties of good starting sequences

From n = 2 through 48 (and probably through n = 80) the starting sequences Sy which achieve
Q(n) at the jump points are unique. These especially good starting sequences are listed in Tables
2 and 3. For 2 < n < 48 (and probably for 2 < n < 80) these sequences Sy also have the following
properties:

(P2) Sy begins with 2.

(P3) Sp does not contain the subword 3 3.

(P4) Sy contains no nonempty subword of the form V* (and in particular does not contain
2222).

n | Starting sequence
1 ]2

2 |22

4 12323
6

8

9

222322

23222323

223222323

1012323222322

1122323222322

14122323222322323

1912232232322232232232

2212322322323222323223223

48 1223223232223222322322232232322232223223222322323

Table 2: Starting sequences consisting of n 2’s and 3’s for which Q(n) > Q(n — 1), complete for
1 <n <48

These are empirical observations. However, since they certainly hold for the first 249 —1 choices
for Sy, we venture to make the following conjecture:

Conjecture 2. If a starting sequence Sy of 2’s and 3’s of length n > 2 achieves Q(n) with Q(n) >
Q(n — 1), then Sy is unique and has properties P2, P3 and P/.

We can at least prove one result about these especially good starting sequences. Let Sy =
$1 89 -+ Sp be any sequence of integers with extension S =8, =gy - Sn+t, where en(Sy) = 1.
Call Sy weak if each S, (r = 0,...,t — 1) can be written as XY*++1 with X # e. In other
words, Sy is weak if the initial term s; is not necessary for the computation of the curling numbers
Sp+41s -5 Sntt. This implies that 7(Sp) = 7(s2 - - - sp,), and establishes
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n | Starting sequence
681223223222322323222322232232223223222322323222322
23223222322322232232
761232223223222322323222322232232232223223222322323
2223222322322322232232223223
771223222323222322232232223222323222322232232223222
32322232223223232223223222323

Table 3: Conjectured to be the complete list of starting sequences of n 2’s and 3’s for which
Q(n) > Q(n — 1), for the range 49 < n < 80.

Lemma 3. If a starting sequence Sy of length n > 2 achieves Q(n) > Q(n — 1), then Sy is not
weak.

One further empirical observation is worth recording, concerning the starting sequences between
jump points. Suppose ng, n1 are consecutive jump points, so that

Qn) = Qn—-1) forng<n<ng,

and Q(n) > Q(n — 1) at n = ng and ny. Then for n < 48 and conjecturally for n < 80, if
ng < n < np, one can obtain a starting sequence that achieves 2(n) by taking the starting sequence
of length ng and prefixing it by a “neutral” string of n — ng 2’s and 3’s that do not get used in
the computation of Q(n). Although this is not surprising, we are unable to prove that such neutral
prefixes must always exist. We return to this topic in §4.3.

The large gaps between the jump points at 22 and 48 and between 48 and 68 are especially
noteworthy. In particular, we have

Q(n) = 120 for 22 < n <47, (2)

and, conjecturally,
Q(n) =131 for 48 <n < 67. (3)

The data shown in Tables 1, 2, 3 and Figure 1 for n in the range 49 to 80 were obtained
by computer search under the assumption that the starting sequence has the properties P3 and
P4 mentioned above, although without making any assumption about uniqueness. As it turned
out, assuming P3 and P4, the best starting sequences at the jump points are indeed unique and
start with 2. Assuming P3 and P4 greatly reduces the number of starting sequences that must
be considered. For example, simply excluding sequences that contain four consecutive 2’s or four
consecutive 3’s reduces the number of candidates of length n from 2" to a constant times ci, where
cp = 1.839--- (cf. A135491). However, this by itself is not enough to enable us to reach n = 80.
We discuss the algorithm that we used in more detail in §2.4.

We should emphasize that in the (we believe unlikely) event that there are starting sequences of
length n with 49 < n < 80 that achieve Q(n) but do not satisfy properties P3 and P4, it is possible
our conjecture that there are jump points at lengths 68, 76, and 77 may be wrong, and there may
be better starting sequences than those shown in Table 3.

2.3 A construction for larger n

We have not succeeded in finding any algebraic constructions for good starting sequences. However,
one simple construction enables us to obtain lower bounds on Q(n) for some larger values of n. Let
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So be a sequence of length n that achieves Q(n), and let S(¢) be its extension of length n + Q(n).
Then in some cases the starting sequence S(¢) Sy will extend to S(¢).S(€)2 and beyond before reaching
a 1. For example, taking Sy to be the length 48 sequence in Table 2, the sequence S (€) Sy has length
179448 = 227 and extends to a total length of 596 before reaching a 1, showing that ©(227) > 369.

2.4 Computational details

Our results are complete for n < 48 and are probably complete through n = 80. In order to extend
the search this far, the algorithms used were specifically tuned to the case of sequences of 2’s and
3’s. There is no easy way (as far as we know) to avoid the basic process of computing the extension
of S (compute cn(S), append it to S, and repeat until cn(S) = 1), and so the focus is on computing
cn(S) quickly. In the following discussion we assume that S has length at least 36. The first step
is brute force: look up the curling number cn(s,_35 - -+ s5,) in a table. Two bits are sufficient to
record cn, since we only care about whether it is 1, 2, 3 or > 4; at two bits per entry, this table
occupies 16 gigabytes. This provides a lower bound on cn(S), and also gives a lower bound for the
length of the repeated substring Y which maximizes c¢n(S). For example, if cn(s,—35 - s,) = 1,
then any Y which gives cn(S) > 1 must be at least 19 digits long, or there would have been two
copies within the last 36 digits of S.

There is also an upper bound on the length of Y. Since we are looking for that Y which
maximizes cn(S), we are only interested in Y’s which could be repeated more times than the
current best known value of cn(S). For example, if we know cn(S) > 3, then we only want a Y
which is repeated four times, and so we only need consider lengths up to the length of S divided
by 4.

We now consider the last n digits of S as a candidate for Y, for all values of n between the
lower and upper bounds. The sequences are represented as 128-bit binary numbers, and so looking
for repetitions of Y can be done with bit manipulation. A few shifts and OR’s generate 4 copies
of Y, or as many as will fit in 128 bits. Then an XOR finds digits in which this differs from S, a
bit scan locates the index of the first difference, and we can divide by the length of Y to find how
many times this Y is repeated. (In fact, all divisions are done with precomputed tables.) If some YV
increases the best known value for c¢n(S), then the upper bound on the length of Y can be revised
downwards. If we reach 128 digits and are still going, we resort to a slow string-based routine. In
practice this slow routine accounts for less than 1% of the program’s execution time.

To compute the conjectured values up to length 80, we exclude (most) strings containing 33
or a subword V4. Obviously we cannot check all 289 strings to see if they violate one of these
conditions, so we need an efficient way to avoid considering them at all. To do this, we compute a
256 x 256 table which lists, for every string of length 8, all the length-8 strings which could legally
follow it. We then construct S recursively in 8-digit blocks, ensuring that the rules are not broken
within any two consecutive blocks. This is not perfect (it will allow a V* to slip by if V is 9 digits
long, for example), but it efficiently eliminates the vast majority of undesirable cases.

2.5 Unavoidable regularities

One reason we think the curling number conjecture may be true, at least in the special case of
sequences of 2’s and 3’s, is that there are several theorems in formal language theory about the
inevitability of regularities in long binary strings. A classical example is Shirshov’s theorem [7,
Theorem 7.1.4], [8, Theorem 2.4.3]. Unfortunately that does not quite do what we need, but it
does offer hope that a proof along these lines may exist. Lyndon’s theorem [7, p. 67] is another
example. Suppose we have a very long sequence of 2’s and 3’s generated by (1), and consider



its canonical decomposition into Lyndon words. There are relatively few Lyndon words that are
possible (e.g., 2222 is forbidden), but since this attack has not yet led to a contradiction we shall
say no more about it.

3 Number of binary sequences with given curling number

In this section we study the number ¢(n, k) of binary sequences of length n and curling number k.
For consistency with the other sections, we continue to consider sequences of 2’s and 3’s, although
for this question any alphabet of size 2 (such as {0,1}) would do equally well.

3.1 Primitive and robust sequences

A sequence S is imprimitive (or periodic) if it is equal to T? for some sequence T and an integer
i > 2. Otherwise, S is primitive [7, p. 7].

Lemma 4. Suppose S has curling number k. Then S can be written as XY*, possibly in several
ways. The shortest such Y is primitive and unique, and has curling number < k if k > 1, curling
number 1 if k = 1.

Proof. Consider all possible ways of writing S = XY*, and let ) denote the set of such Y’s of
minimal length. Every Y € ) is primitive, for if Y = 7%, i > 2, then S = X7, and cn(S) > ik > k,
contradicting the definition of ). To establish uniqueness, we observe that S = X Y= XoaF
with |Y7| = |Y2| implies Y1 = Y. If £ > 1 and Y € Y has curling number ¢ > k > 1, say Y = UV,
V| > 1, then S = X(UV¢)* = X'V¢ with ¢ > k, |V| < |Y]|, a contradiction. Finally, if k =

L,
certainly Y cannot have curling number greater than 1, or .S would too. O

We denote the length of this shortest Y by w. We let C(n,k,7) (for n > 1, 1 < k < n,
1 < 7 < n) denote the set of all S with the given values of n, k, and 7, ¢(n,k,m) := #C(n, k,7),
C(n, k) = an:/fj C(n,k,m), and c¢(n, k) := #C(n, k) = ZWn:/fJ c(n, k,m).

If S has curling number 1 then the shortest Y for which S = XY is simply the last term of S,
som=1and S € C(n,1,1). The sets C(n,1,7) for 7 > 1 are empty.

We let P(n,k) (for 1 < k < n) denote the subset of primitive S € C(n, k), and p(n,k) :=
#P(n, k). Note that C(n,1) = P(n, 1), since curling number 1 implies primitive.

Also let Q(n, k) := Ule P(n,i) (for 1 < k < n) denote the set of primitive sequences with
curling number at most k, and ¢(n, k) := #Q(n, k) = Zle p(n,i). We also set ¢(n,0) := 0 and
q(n, k) := g(n,n) for k > n. By definition, ¢(n,n) is the total number of aperiodic binary sequences
of length n, and it is well known ([5]; see also entry A217943 in [9]) that

atnm) = > n(5)2", (4)
dln

where p is the Mobius function (g(n,n) is sequence A027375).
Call S € P(n,k) robust if no proper suffix of S¥*1 has curling number > k + 1. Examples of
non-robust sequences first appear at length 5, where S = 32232 € C(5,1) is not robust since

S? = 3223232232

has the suffix (232)2. At length 8 there are examples with k = 2, such as S = 32232232,
for which S® has the suffix (232)3. Let P’(n,k) denote the subset of robust S € P(n, k), and let
p'(n, k) == #P'(n, k).
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Tables 4, 5, 6, and 7 show the initial values of ¢(n, k), p(n, k), ¢(n, k), and p'(n, k), respectively.
There are far fewer non-robust sequences than robust, and their numbers are shown in Table 8.

n\k 1 2 3 4 5 6 7 8 9 10 11 12
1 2
2 2 2
3 4 2 2
4 6 6 2 2
) 12 12 4 2 2
6 20 26 10 4 2 2
7 40 52 20 8 4 2 2
8 74 110 38 18 8 4 2 2
9| 148 214 82 36 16 8 4 2 2
10| 286 438 164 70 34 16 8 4 2 2
11| 572 876 328 140 68 32 16 8 4 2 2
12| 1124 1762 660 286 134 66 32 16 8 4 2 2

Table 4: Table of ¢(n, k), the number of binary sequences of length n and curling number k, for
1 <k <nandn <12 (for an extended table see A216955).

n\k 1 2 3 4 5 6 7 8 9 10 11 12
1 2

2 2 0

3 4 2 0

4 6 4 2 0

) 12 12 4 2 0

6 20 20 8 4 2 0

7 40 92 20 8 4 2 0

8 74 100 36 16 8 4 2 0

9| 148 214 76 36 16 8 4 2 0

10| 286 414 160 68 32 16 & 4 2 0

11| 572 876 328 140 68 32 16 8 4 2 O
1211124 1722 640 276 132 64 32 16 8 4 2 0

Table 5: Table of p(n, k), the number of primitive binary sequences of length n and curling number
k, for 1 <k <mnand n <12 (for an extended table see A218869).

3.2 Three preliminary theorems

The classical Fine-Wilf theorem ([4]; [1, p. 13], [6], [7, p. 10]) turns out to be very useful for studying
curling numbers.

Theorem 5. (Fine and Wilf) If sequences S = X* and T = Y7 have a common suffiz U of length
Ul = |X| + [Y] = ged(IX],[Y]), (5)

then, for some sequence Z and integers g, h, we have X = Z9,Y = Z", |Z| = ged(| X|, |Y]).
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S
/
o

10 12 12
24 28 30 30
48 52 54 54
40 92 112 120 124 126 126
74 174 210 226 234 238 240 240
148 362 438 474 490 498 502 504 504
286 700 860 928 960 976 984 988 990 990
572 1448 1776 1916 1984 2016 2032 2040 2044 2046 2046
1124 2846 3486 3762 3894 3958 3990 4006 4014 4018 4020 4020

— = © 00 O Ui W N+
[\~
S
i
[a)

— =
[N}

Table 6: Table of ¢(n, k), the number of primitive binary sequences of length n and curling number
at most k, for 1 < k <n and n < 12 (for an extended table see A218870).

n\k 1 2 3 4 5 6 7 8 9 10 11 12
1 2

2 2 0

3 4 2 0

4 6 4 2 0

) 10 12 4 2 0

6 20 20 8 4 2 0

7 36 92 20 8 4 2 0

8 72 98 36 16 8 4 2 0

9| 142 214 76 36 16 8 4 2 0

10| 280 414 160 68 32 16 8 4 2 O

11| 560 870 326 140 68 32 16 8 4 2 O
12 | 1114 1720 640 276 132 64 32 16 8 4 2 0

Table 7: Table of p'(n, k), the number of robust primitive binary sequences of length n and curling
number k, for 1 <k <n and n < 12 (for an extended table see A218875).
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n\k| 1 2 3 45 6 7 8 9 10 11 12
110

2100

310 0 0

410 0 0 0

5/ 2 0 0 0 O

6/ 0 000 0O
714 0 0 0000

8/ 2 2 000000

996 000 OO 0O0O

10{ 6 000 00O0O0O0 O
11112 6 2 0 0 0 0 0 0 O O
12110 2 0 0 0 0O 0 O O O O O

Table 8: The numbers p(n, k) — p’(n, k) of non-robust primitive binary sequences of length n and
curling number k, for 1 < k <n and n < 12 (for an extended table see A218876).

In most applications all we will need is |[U| > |X| + |Y| — 1, rather than (5) itself.
There is an equivalent definition of robustness that is easier to check.

Theorem 6. If S € P(n,k) is not robust, implying that S**1 has a proper suffiz T**1 for some
T, then T**1 is in fact a proper suffiz of S2.

Proof. The assertion is trivially true if £ = 1, so we assume k > 2. The hypotheses imply ¢ :=
IT| < n. Now S¥*! and T**! have a common suffix of length (k + 1)t. If it were the case that
(k+ 1)t >n+t—1, by Theorem 5 we would have S = Z9, T = Zh, for some Z,g,h with g > h,
implying ¢ > 2 and so S would be imprimitive, a contradiction. So (k+ 1)t <n+t—1 < 2n, as
required. ]

It follows that S € P(n, k) is robust if and only if no proper suffix of S? has curling number
k + 1. This greatly simplifies the computation of the numbers p(n, k).

A trivial but useful observation is that prefixing a sequence with a single number cannot increase
the curling number by more than 1:

Theorem 7. If S € C(n, k) then 25 (and equally 3S) is in either C(n + 1,k) or C(n+ 1,k +1).

Proof. If, for example, 25 € C(n + 1,1) with [ > k + 2, then 28 = U V! for some U, V,[, and V!~!
(at least) is a suffix of S, contradicting the fact that S has curling number k. O

3.3 A recurrence for c(n, k)

The first main theorem of this section expresses the n-th row of the ¢(n, k) table in terms of the
(n — 1)st row and much earlier rows of the p(n, k) and p’(n, k) tables.

Theorem 8. The numbers c(n, k) have the following properties: c(n,k) = 0 forn < k —1,
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c(n,k) =2 forn==k and k+ 1, and, forn >k + 2,

c(n,k) = 2¢(n—1,k)

(6)

where the Iverson bracket [R] is 1 if the relation R is true, 0 otherwise.

Proof. We assume k > 1 and n > k+ 2. Suppose S € C(n, k) and let T' denote S with its left-most
term deleted. We consider the cases cn(7) = k and cn(T') < k separately.

In the first case, if T' is any sequence in C(n — 1, k), and S is 2T or 3T, then, by Theorem 7, S
is in either C(n, k) or C(n,k + 1). So we will obtain 2¢(n — 1, k) sequences in C(n, k), except that
we must exclude from the count those T' € C(n — 1, k) with the property that 27 or 3T = V*+1 for
some primitive V' of length n/(k + 1). This can only happen when n is a multiple of k£ + 1. These
V’s are primitive sequences of length n/(k + 1), with curling number | < k, and are such that no
proper suffix of V¥+1 has curling number greater than k. If [ = k, the number of such V’s is (by
definition) p'(n/(k + 1),k). On the other hand, if 1 <1 <k —1, any V € P(n/(k + 1),1) has the
property that no proper suffix of V¥*! has curling number greater than k (and the number of these
is p(n/(k+1),1)). This follows from the Fine-Wilf theorem (Theorem 5). For if V**! has a proper
suffix of the form U**!, then these two sequences overlap in the last (k+ 1)u terms, where u = |U],
and also u < v, where v = |V| = n/(k + 1). Since V has curling number [ < k, the right-most k
copies of U are not a suffix of V, and so ku > v. This implies

(k+1u > v+u—1, (7)

and so by Theorem 5, V = Z9, U = Z" h < g, g > 2. But V¥ = 729 is a suffix of T, so
en(T) > 2k > k, a contradiction. (Further applications of the Fine-Wilf theorem will follow this
same pattern, and we will not give as much detail.)

In the second case we must consider sequences S = V¥ where cn(T) < k. Now n must be a
multiple of k, and V € P(n/k,l) for 1 <1 < k — 1 is such that no proper suffix of V* has curling
number k. If [ = k — 1, the number of such V’s is (by definition) p’(n/k,k —1). On the other hand,
if 1 <1< k-2, the condition that no proper suffix of V¥ has curling number k follows from the
Fine-Wilf theorem by an argument similar to that given above (except that k + 1 is replaced by k),
and the number is p(n/k,1). This completes the proof of the theorem. O

3.4 Sequences with curling number 1

For the purpose of investigating the curling number conjecture, we are particularly interested in
the first three columns of the ¢(n, k) table, since they determine the probabilities that a random
sequence of 2’s and 3’s has curling number 1, 2, 3, or > 4 (see §4.2). The values of ¢(n, 1) are
especially intriguing, as this is a combinatorial problem of independent interest. The first 30 terms
of ¢(n,1) were contributed to [9] by G. P. Srinivasan in 2006, who described it as the “number
of binary sequences of length n with no initial repeats”, which is equivalent to our definition (see
A122536). However, we have been unable to find a formula for ¢(n,1)*, or even a recurrence that

“Apart from the conjectured asymptotic estimate (27).
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expresses ¢(n, 1) in terms of the values of ¢(m, 1) for m < n. Theorem 8 says only that
C(n7 ]-) = 20(” - 1’ 1) - [2 | n] p/(n/Qa 1)7 (8)

p'(n/2,1) being the number of robust primitive binary sequences of length n/2 and curling number 1.
Use of (8) enables n terms of the ¢(-, 1) sequence to be obtained from n/2 terms of the p/(-, 1)
sequence. In practice, this limits us to about 100 terms of the former sequence. In order to obtain
more terms, we introduce some further terminology (which will be used only in this section).
If S has length n, let SI denote its length-i suffix, for 1 < i < n. Then we define

A(n,i) = {SeC(n,1)]cen(SS) =1}, 1<i<n,
B(n,i) == {SeC(n,1)]|cen(sSsHs) =1}, 1<i<n,
En,ij) = {SelCn,1)|8USseBn+ij}, 1<i<nl<j<n+i,

and let a(n,i) = #A(n,i), b(n,i) = #B(n,1), e(n,i,7) = #E(n,i,7). S = T will mean that T is a
suffix of S, and S > T that T is a proper suffix of S.

The following two theorems give a canonical form (see (9)) for non-robust sequences with curling
number 1.

Theorem 9. If cn(S) =1 but cn(T'S) > 1 for some T with S > T, then there exist X #¢€,Y # €
with
S=XYX, where cn(X)=1,T>Y, and X =Y. (9)

Proof. Since en(T'S) > 1, TS = ZZ for some Z with |Z| < |S|, and therefore S > Z. We write
S = XZ and observe that TXZ = ZZ, so TX > Z. Therefore either X = Z or Z = X. The
former implies cn(S) > 1, a contradiction. So Z > X, say Z =Y X, and S = XY X.

Since S = X, en(X) =1. AlsoTX = Z =YX, soT » Y. It remains to show that X > Y.
Now § =T =Y and S = X, so either Y = X or X > Y. The former implies Y = WX for some
W, and then S = XY X = XWXX, contradicting cn(S) =1. So X > Y. O

For example, S = 3322322333223 has curling number 1 (the conspicuous substring 333 makes
it easy to check this). If T = 2333223, then T'S = 2333 Z2, where Z = 22333223 (the spaces in
these strings are for legibility). Then, following the steps of the proof, we write S = XZ, which
defines X = 33223, and then write Z = Y X, which defines Y = 223, and so finally we have

S = XYX = 3322322333223,

as claimed.
Theorem 10. If S=XYX =UVU, with X =Y #¢, U =V #¢, X # U, then cn(S) > 1.

Proof. Without loss of generality, U > X. Since both X and U are prefizes of S, we have U = X Z
for some Z # ¢, and S = XZ. Now 2|Z| = |S| —2|X| = |V| < |S| =2|X]| = |Y]| < |X|, so | X]| > |Z|.
This implies X > Z (they are both suffixes of S), say X = AZ,s0 S=UVU =UVXZ =UVAZZ,
contradicting cn(S) = 1. O

Theorems 9 and 10 say that a non-robust sequence S with curling number 1 can be written in
a unique way as S = XY X, where Y is a suffix of X.

13



Corollary 11. (i) For 1 <i < n/3, there is a bijection between the sets C(n,1)\ A(n,i) and

L(n—1)/2]
B(m,n —2m).
m=[(n—i)/2]

(ii) For n/3 < i < n, there is a bijection between the sets C(n,1) \ A(n,7) and

L(n—1)/2]
U B(m,n —2m).

m=1+|n/3]

Proof. Fix i, where 1 < i < n. First, suppose that S is in C(n,1) \ A(n,i). Taking T = S in
Theorem 9 we may write S = XY X where m := |X| > 1, X € C(m,1), n —2m = |Y| < |Sll| =
and m = |X| > |Y| =n—2m > 1. Hence X € B(m,n — 2m) for some m satisfying the three
conditions: m > (n —1)/2, m > n/3 and m < (n — 1)/2. By Theorem 10, X belongs to only one
such B(m,n — 2m).

Conversely, if m satisfies these three conditions and X € B(m,n—2m) thenlet S = XX [n=2m] x
By the definition of B(m,n — 2m), S must be in C(n,1) and since m > (n — i)/2, we have S!S >
Sln=2mlg — (Y X)2, so that S is not in A(n, ).

This establishes a bijection between C(n,1) \ A(n,i) and the union of B(m,n — 2m) for m
satisfying the three earlier conditions. The proof is completed by observing that (n —i)/2 > n/3 if
and only if n > 37, which is the condition that separates cases (i) and (i7) of the Corollary. O]

Since the unions in Corollary 11 are clearly disjoint, we immediately obtain the following for-
mulas for a(n,1).

Corollary 12. (i) For 1 <i<n/3,

L(n=1)/2]
a(n,i) = c(n,1) — Z b(m,n —2m). (10)
m=[(n—i)/2]
(i1) For n/3 < i <mn,
l(n=1)/2]
a(n,i) = e(n,1) — Z b(m,n —2m). (11)
m=1+|n/3|

The next three theorems give a further refinement of non-robust sequences, and lead to the set
bijections and formulas in Corollaries 16 and 17. We postpone their proofs to the Appendix. The
proof that Corollary 16 follows from Theorems 13 through 15 is similar to the proof of Corollary
11 and is omitted.

Theorem 13. If X =Y, ecn(YX) = 1, and en(XY X) > 1, then there exist S and T such that
YX =STS with X =T, S > T, cu(S) = 1. Furthermore, either |S| = |Y| or |S| > 2|Y|.

Theorem 14. Ifn/2 < i < n then there is a bijection between A(n,i) \ B(n,i) and B(i,n —i).

Theorem 15. If 1 < i < n/3 then A(n,i) \ B(n,i) is a disjoint union of E(m — i,i,n + i — 2m),
where max(2i, 1+ |(n+14)/3]) <m < |[(n+1i—1)/2].
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Corollary 16. (i) For 1 < i < n/5, there is a bijection between A(n,i) \ B(n,i) and the disjoint
union of E(m —i,i,n+1i—2m), where 2i <m < (n+i—1)/2.

(i) For n/5 < i < n/3, there is a bijection between A(n,i) \ B(n,i) and the disjoint union of
E(m—i,i,n+1i—2m), where (n+1i)/3<m<(n+i—1)/2.

(i1i) For n/3 <i<mn/2, B(n,ti) is empty.

(iv) For n/2 < i < n, there is a bijection between A(n,i)\ B(n,i) and B(i,n —1).

Corollary 17. (i) For 1 <i<n/3,

[(n4i—1)/2]
b(n,i) = a(n,i) — Z e(m—1i,i,n+1—2m). (12)
m=max(2¢,14+|(n+17)/3])

(ii)
b(n,i) = 0 for n/3<i<n/2. (13)

(iii)
b(n,i1) =a(n,i) —b(i,n—1) for n/2<i<n. (14)
Observing that p'(n/2,1) = a(n/2,n/2 — 1), equations (8) and (10) through (14) can be used
recursively to compute values of ¢(n, 1), using brute force to determine e(m, i, j) only for relatively

small values of m (see §3.7).

We have briefly investigated the possibility of generalizing the approach in this section to deal
with curling numbers k greater than one. The following theorems replace Theorems 9 and 10:

Theorem 18. Suppose S € P(n,k) \ P'(n,k), where k > 1. Then there exist X and T with
S=X(TX)* and S~ T.

Proof. By Theorem 6, S = PQ*+! with P # €. If (k+1)|Q| > n+ |Q| — 1, then Theorem 5 would
imply that S is periodic. So k|@Q| < n — 1, and k copies of @ lie properly inside S, say S = XQF
with |X| < |Q|, X # e. Define T by Q = TX and we have S = X(TX)*. Also PQ*! = SXQF,
so PQ=PTrX =5X and S > T. O

Theorem 19. The representation S = X(TX)’“ obtained in Theorem 18 is unique.

Since we will not make any use of Theorem 19, we omit the somewhat tedious proof.

Because S € P(n, k), we know that S can be written as XY* where Y is primitive, possibly
in several ways. Theorems 18 and 19 say that if S is not robust, then exactly one of these Y’s has
the corresponding X as a suffix. We have not pursued the generalizations of Theorems 13-15 and
Corollaries 16—-17 to this case.

3.5 The values of ¢(n, k) for k > [\/n]

The second main theorem of this section gives an expression for ¢(n, k) in the range k > |/n| that
involves the partial sum function g(m, k).

Theorem 20. We have ¢(n,n) = 2 for all n, ¢c(n,n — 1) = 2 for n > 2, and, for n > 4 and

k> [v/n],

c(n, k) = {Qn(’m)ﬂ (2" = g(mk—1), ifl<m<|zy] 1)

1 )
20k g(m, k — 1), if [P <7 <|%],

and c(n, k) = Z}:L:/fJ c(n, k,m).
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Proof. We assume n >4 and k > [\/n]| > 2. Note that k > |\/n] is equivalent to k + 1 > /n.
We consider the cases n < 7(k+ 1) — 1 and n > (k + 1)7 separately.

First, if n <w(k+1) — 1, we have
ntl <W<{EJ.
k+1|~ — Lk

Let us write S = X Y* where Y is minimal and has length 7. Then n < 7(k + 1) — 1 implies
|X| < 7. By Lemma 4, Y € Q(m,k — 1). There are 2"~™* choices for X, and ¢(m,k — 1) choices
for Y, and we claim that the resulting sequence X Y* always has curling number k. For suppose
it has curling number > k, so that we have X Y* = U V**! with u = |U|, v = |V/|. There are two
sub-cases. If (k+ 1)v > km, then we have (k + 1) > |S| > (k + 1)v, implying 7 > v. The two
different representations of S have a common suffix Y* of length k7, which, since k > 2, satisfies

kr > v+m—1. (16)

By Theorem 5, Y = Z9, V = Z", with ¢ > h, so ¢ > 2, and Y is imprimitive, a contradiction. On
the other hand, suppose (k + 1)v < kr. Again 7 > v. Since cn(Y') < k, kv > w. Now the common
suffix has length (k + 1)v, our inequalities imply

(k+1v > vtm—1, (17)

and, again by Theorem 5, Y is imprimitive, a contradiction. So the number of sequences S of this
type is 2" *7q(m, k — 1), as claimed.
Second, if n > (k + 1)m, we have

1<n< i
- T lk+1]

Let us write

S = XBYF, (18)

where X has length n — (k + 1)m, B has length 7, and Y € Q(w,k — 1). Certainly B # Y (B
stands for “blocker”, the purpose of which is to ensure that Y is repeated only & times). There are
potentially 27~ *+D7 choices for X, 27 — 1 choices for B, and q(m, k — 1) choices for Y. We claim
that the assumption k > |y/n| guarantees that all choices result in a sequence with curling number
k. For suppose on the contrary that S (in (18)) is also equal to U VKTl with u = |U|, v = |V|.
Again there are two sub-cases. If (k 4+ 1)v > km, then we have

(k+1)?% >n > (k+1)v > kr,

so k+1 > v, k> v. The two different representations of S have a common suffix of length k7, and
our inequalities imply (16). On the other hand, suppose (k + 1)v < kmr. Again we have kv > m,
and the common suffix satisfies (17). In both cases Theorem 5 now leads to a contradiction. This
complete the proof of the theorem. O

The formulas in Theorem 20 cover a large portion of the ¢(n, k) table. However, although with
more work they could be extended so as to apply to slightly smaller values of k, it seems unlikely
that this approach will lead to a formula for ¢(n, k, 7) for small values of k.
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n\k| 1 2 3 4 5 6 7 8 9 10 11 12
21 2 =2
31 0 2 =2
41 2 -2 2 =2
5 0 0o 0 2 =2
6 4 -2 -2 0 2 =2
710 o o o0 0 2 -2
86 -6 2 -2 0 0 2 =2
91 0 6 -6 0 0 0 0 2 -2
0(10 =10 0 2 -2 0 0 0O 2 =2
111 0 o o o0 o o o0 o 0 2 -2
12120 -10 -4 -6 2 -2 0 0O 0O 0 2 =2

Table 9: The difference table d(n, k) defined by (19) (for an extended table see A217943).

3.6 The difference table d(n, k)

In the c(n, k) table (Table 4), if we look at the difference between each row and twice the previous
row, we obtain a much simpler table.” We define

d(n,k) = 2¢(n—1,k) — c(n, k), (19)

forn > 2, 1 <k <n-—1, with d(n,n) = —2. The initial values are shown in Table 9. We see
that if one ignores the initial entries in each row, most of the remaining entries are zero, except for
diagonal lines of pairs of nonzero entries. More precisely, it appears that

d(2k,k—1) = —d(2k,k) = 2, k>4,
d(3k,k—1) = —d(3k,k) = 6, k>5,
d(dk,k—1) = —d(dk,k) = 12, k>6,
d(5k,k—1) = —d(5k, k) = 30, k>7,

(20)

and so on. Only the first of these diagonal lines can be seen in Table 9, but they are all visible in
the extended table that is given in entry A217943 in [9]. These expressions all follow from Theorem
20:

Theorem 21. In the range k > |\/n|, the only nonzero entries in the d(n, k) table are
d(mk,k—1) = —d(mk,k) = q(m,m), form>1, k>m+2. (21)

Proof. This follows easily from Theorem 20. We prove the second assertion in (21) as an illustration.
We have
d(mk,k) = 2c(mk —1,k) — c(mk, k). (22)

From (15),

m—1
c(mk, k) Z c(mk,k,m) + c(mk,k,m), (23)
=1

Tt was by studying the d(n, k) table that we were led to Theorems 8 and 20.
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—1
c(mk —1,k) = c(mk —1,k,m). (24)
1

3

3
Il

Each summand in (23) (see (15)) is exactly twice the corresponding term in (24), and c¢(mk, k, m)
= q(m, k) = q(m,m), so d(mk, k) = —q(m,m). O

Note that whereas the expression for ¢(n, k) in Theorem 20 involves the general function ¢(, k),
the expression for d(n, k) in the range k > |\/n] is fully explicit, since g(m,m) is given by (4).
Theorem 8 gives another formula for d(n, k):

_ rf_n n _ _ ("o o
d(mk)—[kmn](p <k+1,k)+q(k+1,k 1)) i) (o (2 =1) +a (B —2))
(25)
and in particular,

d(n,1) = [2|n] p'(n/2,1),
d(n,2) = [3]n] (p'(n/3,2) +p(n/3,1)) — [2|n] P'(n/2,1). (26)

The first of these is nicely checked by noticing that the nonzero entries in the first column of the
d(n, k) table, namely 2,2, 4,6,10,20,--- are also the entries in the first column of the p/(n, k) table
(Table 7). It is also worth mentioning that if p is prime then c¢(p, k) = 2¢(p — 1, k) for all k (see
(8)) and so d(p, k) = 0.

3.7 Computation of ¢(n, k)

We constructed an extensive table of values of ¢(n, k), hoping that it would lead to additional
insight into these numbers. First, by direct enumeration, using a number of different programs and
different computers (including a four-day computation on a cluster of 64 SPARC processors), we
calculated c(n, k) for n < 51.

Second, we tabulated e(n,i,j) for n < 23. This was sufficient for the recurrences (8) and
(10)—(14) to give ¢(n, 1) for n < 200. These values suggest the conjecture that

c(n,1)

lim
n—oo

= 0.27004339525895354325 - - - . (27)

From Equation (8) we have
c(n,1) > 2¢(n—1,1) — [2|n]e(n/2,1),
which implies, using the known values of ¢(n, 1), that
¢(n,1) > 0.27-2" forn >200. (28)

We omit the proof. But we have no comparable upper bound for ¢(n,1) (other than 2"), nor a
proof that the limit (27) exists.

Third, we used a different approach, which enabled us to take a table of the curling numbers
of all sequences of length n < ng, and from this produce a table of ¢(n, k) for all n < 2ng, without
having to compute the curling numbers of all 22" sequences of length 2ng. The idea underlying
this approach is the following. Consider a sequence S of length n with ng < n < 2ng, and let M be
its length-ng suffix. As a first approximation, we set cn(S) = cn(M) = [ (say). This approximation
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will be wrong if for some suffix T' of M it should happen that 7'+ is a suffix of S. If so, we must
increase cn(S) by 1 for all S having suffix T'*!. There are complications if there is more than one
such T' to be considered, but the Fine-Wilf theorem (Theorem 5) shows that this can only happen
when [ = 1. We omit discussion of the details. Using this approach (with ng = 32) we were able to
extend the table of values of ¢(n, k) and p(n, k) to n = 64.

Finally, we tabulated p/(n,k) for n < 36. This, together with the 200 terms of ¢(n,1), was
sufficient for the recurrence in Theorem 8 to give the first 104 rows of the ¢(n, k) table. These
results can be seen in A216955 and A122536.

4  Tail lengths of {2,3}-sequences

4.1 Distribution of tail lengths

Let t(n,i) denote the number of starting sequences Sy of n 2’s and 3’s which have tail length ¢,
where i ranges from 0 to Q(n). The initial values are shown in Table 10. Since the rows rapidly
increase in length (cf. Table 1), we end this table at n = 9. Note that the entries for i = 9 through
55 (which are all zero) have been compressed into a single column. Rows n = 22 and 32 are shown
in Tables 11 and 12. Entry A217209 in [9] gives the first 48 rows in full. The first column is the
same as the first column of the ¢(n, k) table, and contains the numbers ¢(n, 1) that are the subject
of §3.4.

n\i| O 1 2 3 4 5 6 7 8 955 56 57 58 59
1] 2

2| 2 1 1

3| 4 2 2

41 6 5 3 1 1

5112 9 6 2 3

620 18 12 6 7 0 0 0 1

7140 34 25 11 14 1 0 1 2

8|7 71 47 24 281 3 2 3 O O 2 1
91148 139 95 48 56 6 4 3 6 O 2 3 1 1

Table 10: Table of t(n, 1), the number of sequences of n 2’s and 3’s with tail length ¢, for 0 < i < Q(n)
(A217209).

As can be seen from Tables 10-12, the values in each row are distributed into clumps, with
each clump gradually thickening as n increases. Table 11 shows the distribution of tail lengths at
length 22, the first time that a tail of length 120 is reached (note the final “1”, indicating that the
starting sequence was unique). By length 32 (Table 12), the clumps have thickened but still end
at 120. A tail of length greater than 120 does not appear until length 48, when the greatest tail
length jumps to 131. The powers of 2 in Tables 11 and 12 suggest that the clumps tend to grow
by prefixing good starting sequences of shorter length by random strings of 2’s and 3’s. However,
we do not have a satisfactory model which explains this distribution.

The mean value of the nth row,

1
on
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0-8 | 1133200 1140102 768386 417081 479224 47190 33440 32283 51035
9-17 6388 6096 1031 2074 516 807 67 0 0
18-26 1 1 3 6 12 7 0 0 0
27-35 0 0 0 0 0 0 0 0 0
36-44 0 0 0 0 0 0 1 7 16
45-53 24 50 98 198 394 786 1316 2633 5121
54-62 5891 7687 9230 14622 12983 6486 2659 642 1099
63-71 463 299 32 0 0 0 0 0 0
72-80 1 0 0 0 0 0 0 0 0
81-89 0 0 0 0 0 0 0 0 0
90-98 0 0 0 0 0 0 0 0 0
99-107 0 0 1 1 2 4 8 16 32
108-116 64 128 256 512 1024 17 17 34 70
117-120 139 282 8 1

Table 11: Distribution of tail lengths ¢(22,4), 0 < i < 120, for all starting sequences of length 22
(22 is the first time a tail of length 120 is reached). Note the three “clumps.”

0-8 | 1159845258 1167273283 786757853 427198253 490970976 48399112 34266983 33065461 52260747
9-17 6585936 6286710 1088875 2157877 553922 848516 69469 519 1038
18-26 836 1547 3092 6184 11843 7303 206 28 57
27-35 99 194 0 0 0 2 9 21 34
36-44 72 130 198 394 788 1576 3153 6305 12610
45-53 25219 50438 100876 201752 403504 804960 1347868 2695736 5244019
54-62 6034490 7874728 9455010 14977616 13308516 6658834 2742615 676305 1153446
63-71 487704 309650 32814 28 24 48 96 193 385
72-80 770 0 0 0 0 0 0 0 0
81-89 0 0 0 0 1 2 5 10 20
90-98 0 1 1 2 4 8 16 32 64
99-107 128 256 512 1024 2048 4096 8192 16384 32768
108-116 65536 131072 262144 524288 1048544 18331 18265 36530 73119
117-120 146237 292601 8798 1144

Table 12: Distribution of tail lengths ¢(32,7), 0 < i < 120, for all starting sequences of length 32.
The clumps have thickened.

at least for n < 48, is converging to a value around 2.741--- (see A216813). That is, if a starting
sequence consisting of n 2’s and 3’s is chosen at random, it will reach a 1 on average after only
2.741--- steps. This is in sharp contrast to the behavior of the best starting sequences, as we see
from Table 1. Of course if the curling number conjecture is false for sequences of 2’s and 3’s, the
mean will be infinite beyond some point.

4.2 A probabilistic model

Let ngn) := ¢(n, k)/2"™ denote the probability that a randomly chosen sequence consisting of n 2’s
and 3’s has curling number k. The available data (n < 200 for k = 1, n < 104 for k > 1) suggests
that as n increases these probabilities are converging to the values

01 ~ 270, 0 ~ 434, 63 ~ 162, > 0 ~ .134.
k>4

When we extend a sequence S by appending the curling number k& = cn(S), if it were the case that
the concatenation Sk were independent of S, we could model this process as a two-state Markov
chain with states “curling number is 2 or 3” and “curling number is 1 or > 4.” The probability of
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staying in the “2 or 3” state would be 0 + 03 ~ .596 - -- and the probability of leaving that state
would be .404 - - - . If the starting sequence is randomly chosen from all 2" possibilities, this model
would imply that the maximal number of steps before reaching the “1 or > 4” state for the first

time would be about
log 2

t ~ n————
" log(1/.596)
This Markov model certainly does not apply at the beginning of the appending process, but it

could conceivably be valid once the sequence has been extended for a while, so we think it is worth
mentioning.

~ 1.34n.

4.3 “Rotten” sequences: prefix decreases tail

Let Sy be an arbitrary sequence of 2’s and 3’s of length n, with tail length 7(Sy) = i, say. It
seems plausible that if n is large, then prefixing Sy by a single 2 or 3 will not change 7(S5p), i.e.,
that 7(2.S0) = 7(3.S9) = 7(Sp). But could doing this actually decrease the tail length? Choosing
an adjective not normally used in mathematics, we will call Sy rotten if either 7(2.Sy) < 7(Sp) or
7(350) < 7(S0), and doubly rotten if both 7(2.Sy) < 7(Sp) and 7(3 Sp) < 7(Sp) hold. There are
surprisingly few rotten sequences of length up through 34. The first few examples are shown in
Table 13, and the numbers of rotten sequences of lengths 1 through 34 are given in Table 14. If
So = 32323, for example, then S\ = 323232332, and 7(S;) = 4. But if we prefix Sy with a 2,
so the starting sequence is 2.5y = 232323, the extension is 23232332, so 7(2.5)) = 2, and Sy is
rotten.
22 333 32323 323232 2323232 3232323 22322232
23222322 23223223 33233233 223222322 223222323 232223222 332332332

2232223222 2232223223 2232223232 2322232223 2322322322 2332332332 3322332233
3323323323 22322232223 22322232232 22322232322 22322322232 22322322322 22323222322

Table 13: The first 28 rotten sequences (A216730).

0 1 1 0 1 1 2 4 4 8
14 11 18 30 26 24 40 35 58 69
48 84 158 67 139 287 215 242 490 323

624 919 516 1072

Table 14: Number of rotten sequences of lengths 1 through 34 (A216950).

However, up to length 34 there are no doubly rotten sequences.
Conjecture 22. Doubly rotten sequences do not exist.

If this conjecture were true, it would imply that one can always prefix a starting sequence Sy
by one of {2, 3} without decreasing the tail length. This would explain the observation made in
§2.2 about the behavior of Q(n) between jump points. It would also imply that Q(n 4+ 1) > Q(n)
for all n, something that we do not know at present.

4.4 Sequences in which first term is essential

A statistic that is relevant to the study of rotten sequences is the following. If a starting sequence
So of length n is chosen at random, and has curling number k, this means we can write Sy = XY*
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for suitable sequences X,Y. What is the probability that we must necessarily take X to be the
empty sequence, i.e., that the only such representation goes all the way back to the beginning of
So (and so the first term is essential for the computation of the curling number)? The sequence
223223 is an example, since here Kk = 2, and X = ¢, Y = 223 is the only representation. But
233233 is not, since k = 2 and we can either take X =¢, Y =233 or X =2332,Y =3, and the
latter representation avoids using X = e. The number of such sequences of length n for 1 <n < 35
is given in Table 15. If n is prime, the number is 2, but the limit supremum of these numbers
appears to grow exponentially.

2 2 2 4 2 8 2 10 8 14
2 40 2 40 32 88 2 192 2 324

100 564 2 1356 32 2226 370 4564 2 9656
2 17944 1450 35424 152

Table 15: Number of sequences of lengths 1 through 35 whose curling number representation X Y*
requires X = e (A216951).

4.5 Sequences where prefix increases tail

In contrast to “rotten” sequences, we also investigated starting sequences Sy for which either
7(2S50) > 7(So) or 7(3Sy) > 7(Sp). The sequence Sy = 22322 is an example, since 7(Sy) = 2,
7(250) = 8, 7(35p) = 2. The numbers of such sequences of lengths 1 through 30 are shown in
Table 16. There are rather more of these than there are rotten sequences, although we found no
example where both 7(2.Sp) > 7(Sp) and 7(3 Sp) > 7(Sp) hold.

2 1 2 1 ) 3 12 9 19 16
38 20 59 42 104 65 213 111 400 245
765 439 1563 820 3046 1731 5955 3292 12078 6343

Table 16: Number of sequences Sy of lengths 1 through 30 such that 7(2.Sy) > 7(Sp) or 7(3.Sy) >
7(So) (A217437).

5 Gijswijt’s sequence

If we simply start with Sy = 1, and generate an infinite sequence by continually appending the
curling number of the current sequence, as in (1), we obtain

G:=112112223112112223211211222311211---.

This is Gijswijt’s sequence, A090822, invented by D. Gijswijt in 2004, and analyzed by van de Bult
et al. [2].

The first time a 4 appears in G is at term 220. One can calculate quite a few million terms
without finding a 5 (as the authors of [2] discovered), but in [2] it was shown that a 5 eventually
appears for the first time at about term

1010%
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Van de Bult et al. [2] also show that G is in fact unbounded, and conjecture that the first time
that a number m > 6 appears is at about term number

a tower of height m — 1. The fairly complicated arguments used in [2] could be considerably
simplified and extended if the curling number conjecture were known to be true.

Our final theorem shows that if the curling number conjecture is true, any starting sequence S
that does not contain a 1 must eventually merge with G.

Theorem 23. Assume the curling number conjecture is true. Let S be an initial sequence not
containing a 1, let S©) be its “extension” (defined in §1), and let 5(0) be its infinite continuation.
Then S(®) = §)@G.

Proof. By definition, S(¢) does not contain a 1 but is immediately followed by a 1. Suppose
S5() £ §)G, and suppose they first differ at a position where S(>) is n, say, whereas S()G is
m < n. This n must be the curling number of some portion of S(>) that begins with a suffix
X, say, of S(°. Let () = WX. Then S = W(XT)"n--- for some prefix T of G, whereas
G=TXT)"'m---. Ifn=2 m=1, we have G = TXT1---. The curling number of the
first copy of T is the first term of X, which is not 1, but the curling number of the second T
is 1, a contradiction. On the other hand, if n > 3, G = TXTXT---XTm---, and the initial
TXTX has curling number at least 2 and cannot be followed by T (which begins with 1), again a
contradiction. O

‘We do not know if the theorem is still true if S is allowed to contain a 1 but does not end with

6 Open questions and topics for future research

1. Is the curling number conjecture (even just for the case of sequences of 2’s and 3’s) true?

2. It would be nice to have some further exact values of Q(n), beyond n = 48, even though they
will require extensive computations.

3. What is the asymptotic behavior of Q(n)?

4. Can the especially good starting sequences shown in Tables 2 and 3 (in particular those of
lengths 22, 48 and 77) be generalized? What makes them so special?

5. Can the properties of good starting sequences mentioned in Conjecture 2 be justified?
6. Can Shirshov’s theorem (see §2.5) be modified so as to apply to our problem?

7. Are there analogs of Theorems 8 and 20 for p(n, k) (the number of primitive sequences) or
p'(n, k) (the number of primitive and robust sequences) ?

8. Are there formulas for ¢(n, k) that are more explicit than those given in Theorems 8 and 207
Is there a formula that matches the 200 known terms of the ¢(n, 1) sequence?

9. Are there formulas or recurrences for the numbers t(n, i) of starting sequences with tail length
i?
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10. Is there a probabilistic model that better explains the distribution of values of #(n,4) visible
in Tables 10-12 and A2172097 The model presented in §4.2 is certainly inadequate.

11. Do “doubly rotten” sequence exist? (See Conjecture 22.)

12. The question implicit in the last sentence of §5.

7 Appendix: Proofs of Theorems 13, 14, 15

7.1 Theorem 13

Proof. The first statement follows immediately from Theorem 9, taking S and T in that theorem
to be YX and X respectively. To prove the second statement, let = := |X|, y := |Y|, s := |9,
t := |T'|, and note that Y X = ST'S implies x +y = 25+ t. Also X = BY (say), with B # e.

We are to show that s = y or s > 2y. First, suppose that y < s < 2y. Since s > y, there exists a
sequence U with |U| = s — y such that S = YU. Then we have the following chains of implications
[the successive assertions are enclosed in square brackets]: [s > y| = [s > y—t] = [t =2s+t—y >
sl=[X>=S>Ul,and [s <2y =[s—y <y]=[Y|<|U|] =Y = U (since YX = YBY =
STYU)| =Y =CU (say)] = [X = S = CUU| = [en(X) > 1], a contradiction.

Second, suppose that s < y. Then there exists U # € with |U| = y — s such that Y = SU. But
x>y >sand YX = STS imply X > S, and since X > Y then X > U also. If S > U then
YX =YBSUX » UU, which contradicts cn(Y X) = 1. Hence [U = S] = [s<y—s] = [2s < y] =
[t+y=2s+t<y+t<y+uz|,since X = T. Since this is impossible, s < y is also impossible. [

Note that the condition |S| = |Y| is equivalent to 2|Y| > |X|: if s = y then z = y + ¢,
which implies 2y = s +y > t + y (since t > s). Conversely, if s # y then s > 2y, which implies
x4y =2s+t>4y+t, x > 3y+t, sox > 2y. Similar reasoning shows that the condition |S| > 2|Y|
is equivalent to 3|Y| < | X]|.

7.2 Theorem 14

Proof. If X € A(n,i)\ B(n,i) then we may apply Theorem 13 to X, taking Y = X[ with | X| = n,
|Y| = i, where n/2 < i < n. So there exist S, T with YX = STS, Y = T, S = T, and either
|S| = |Y| or |S| > 2|Y|. We cannot have |S| > 2|Y], since that implies |S| > n, 2|S| > 2n > [V X]|,
which contradicts Y X = STS. So |[S|=|Y|, Y =5, X =TY,and |[T| =n—i. Alsocn(YX) =1
by definition of A(n,i), i.e., en(YTY)=1,s0Y € B(i,n —i).

The map from X to Y is one-to-one, since X determines Y. To show it is onto, take Y €
B(i,n — i), let @ = Y"1, and define P by Y = PQ and set X := QY = QPQ. Then we have
en(YQY) = cen(YX) =1, so X € A(n,i). Also XY X = QPQ PQ QPQ has curling number at
least 2, so X ¢ B(n,i). Hence X € A(n,i) \ B(n,i). O

7.3 Theorem 15

Proof. Since the sets £ in the sum are clearly disjoint, we just need to establish a bijection between
the elements of A(n,i) \ B(n,?) and the disjoint union of the £ sets defined by the range of m.

As in the previous proof, if X € A(n,i) \ B(n,i), then we may apply Theorem 13 to X, taking
Y = XU with |X| = n, |Y| = i, where now 1 < i < n/3. There exist S, T with YX = STS,
Y = T,85 > T, and either |S| = |Y] or |S| > 2|Y|. Let |S| = m, |T| = n+¢—2m. As before,
S € B(m, |T|). There are three conditions that m must satisfy: (i) |T'| > 1 implies m < (n+i—1)/2;
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(ii) |S| > |7T'| implies m > [(n +¢)/3]; (iii) m = ¢ < n/3 is incompatible with Y X = ST'S, so
m > 24.

Since m > i, we may write S = YU, with |U| = m — 4. Since m > 2i, m — i > i and |U| > |Y|.
Now X > S, so X > U and therefore U > Y. Since S =YU € B(m,|T|), U € E(m —1i,i,|T|). The
mapping X +— U is one-to-one since X determines ¥ = X [ S and T are unique by Theorem 10,
m = |S|, and S = YU determines U.

To show the map is onto, suppose U € E(m — i,i,n + i — 2m) for some m satisfying conditions
(i)-(iii) above. Then set Y = Ull, § = YU, T = S"*+i=2m and X = UTS. Then YX = STS
so that U € E(m — i,i,n + i — 2m) implies YX € A(n,i). But XY X = XSTS = TSTS, so
cn(XY X) > 1 and therefore XY X ¢ B(n,i). O
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