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Abstract 

The pattern of gene expression in the phenotype of an organism 

is determined in part by the dynamical attractors of the 

organism’s gene regulation network. Changes to the 

connections in this network over evolutionary time alter the 

adult gene expression pattern and hence the fitness of the 

organism. However, the evolution of structure in gene 

expression networks (potentially reflecting past selective 

environments) and its affordances and limitations with respect 

to enhancing evolvability is poorly understood in general. In 

this paper we model the evolution of a gene regulation network 

in a controlled scenario. We show that selected changes to 

connections in the regulation network make the currently 

selected gene expression pattern more robust to environmental 

variation. Moreover, such changes to connections are 

necessarily ‘Hebbian’ – ‘genes that fire together wire together’ 

– i.e. genes whose expression is selected for in the same 

selective environments become co-regulated. Accordingly, in a 

manner formally equivalent to well-understood learning 

behaviour in artificial neural networks, a gene expression 

network will therefore develop a generalised associative 

memory of past selected phenotypes. This theoretical 

framework helps us to better understand the relationship 

between homeostasis and evolvability (i.e. selection to reduce 

variability facilitates structured variability), and shows that, in 

principle, a gene regulation network has the potential to 

develop ‘recall’ capabilities normally reserved for cognitive 

systems. 

Evolvability 

How natural selection results in the evolution of complexity, 

if it is natural selection that is responsible, is not yet 

understood [1,2]. It is easy to see how natural selection 

increases the frequency of fit phenotypes from a given 

distribution of phenotypic variants. But this is only part of the 

explanation. Although continued adaptation does not require 

that the available distribution of phenotypes is fitter than the 

parent on average (that would imply directed variation), 

continued increases in fitness and functionality require that 

this distribution includes at least some phenotypes that are 

fitter than the parent. This is often taken for granted, but 

experience in evolutionary algorithms and artificial life 

experiments suggests that such variants are quickly exhausted 

by selection, precluding further adaptation [2]. Thus the 

evolution of significant biological complexity requires that we 

explain how the distribution of phenotypes, resulting as they 

do from random variation in genotypes, includes phenotypes 

that are, not merely different from, but fitter than the parental 

type. The explanation might be, at least in part, that in natural 

organisms the distribution of phenotypic variants itself 

becomes better adapted over time [3] – hence enhancing 

evolvability, the ability of a population to evolve [4,5,6,7]. 

Since the processes of development, mapping genotype to 

phenotype, is itself genetically specified and subject to natural 

selection, this seems like a possibility, at least in principle. 

 However, although it is easy to say that natural selection 

should favour more evolvable genotypes, without a proximal 

account for the selective gradients that would produce such an 

outcome this is just wishful thinking. It is not so easy to pin 

down the source of a selection pressure that increases 

evolvability. For example, enhanced evolvability ought to 

mean that a genotype evolves better, not just that it evolves, 

and given that adaptive variants from a given phenotypic 

distribution are quickly exhausted it is hard to see how a 

variant genotype in a population that is stuck at a local 

optimum can be said to have better evolvability than another. 

This implies that the evolution of evolvability might require a 

constantly varying selective environment and multiple 

opportunities to generate and exploit variant phenotypic 

distributions. Moreover, if the environment changes in an 

entirely arbitrary fashion, a genotype to phenotype mapping 

cannot evolve to exploit it, so we are lead to the conclusion 

that such a mapping could only be adaptive if it exploits some 

kind of structure or regularity observed in the distribution of 

selective environment [8].  

 A simple way in which this might work is as follows. 

Different genotypes with the same phenotype might 

(nonetheless) have a different distribution of phenotypic 

neighbours - phenotypes produced through small mutations to 

the genotype. In a selective environment that varies from one 

selective regime to another (Fig.1), natural selection might 

favour genotypes that have phenotypes that are fit in one 

regime and have phenotypic neighbours that are fit in the 

other (over genotypes that have phenotypes that are equally fit 

in the first regime but do not have phenotypic neighbours that 

are fit in the other) [8]. In a sense, we can understand the 

propensity to produce phenotypes that are not currently 

selected for but have been selected for in the past as a kind of 

‘memory’ of past selective environments [8], and under 

certain conditions evolved genotypes may even “generalise to 

future environments, exhibiting high adaptability to novel 
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goals”. But exactly how this might happen, what the selective 

pressures are that might produce this outcome, and the 

limitations and affordances of such a process are poorly 

understood in general. 

Part of the process might involve the evolution of 

modularity, for example [9,10]. That is, certain phenotypic 

features might become tightly integrated units (clusters of 

phenotypic features that co-vary), whilst others remain, or 

become, separated and vary independently. Such modularity 

might then provide, in effect, higher-level variation – i.e. 

variation at a higher-level of organisation [11]. Such high-

level variability might in principle provide new combinations 

of modules with high probability (compared to the original 

distribution of ‘atomic’ character combinations) even though 

some particular combination of modules that is fit may not 

previously have been selected for. 

Wagner et al [10] explain part of the proximal mechanism 

that might be involved in this process. Referring to genetic 

loci that affect the correlation of phenotypic traits [12], they 

state that “natural selection can act on [such loci] to either 

increase the correlation among traits or decrease it depending 

on whether the traits are simultaneously under directional 

selection or not. …[Resulting in] a reinforcement of 

pleiotropic effects among co-selected traits and suppression of 

pleiotropic effects that are not selected together” [10].  

Wagner et al do not seem to notice, however, that this 

suggests intriguing parallels with Hebbian learning familiar in 

computational neuroscience [13,14]. Hebb’s rule, in the 

context of neural network learning, is often represented by the 

slogan neurons that fire together wire together, meaning that 

synaptic connections are strengthened between neurons that 

have correlated activation in response to a stimulus. Formally, 

a common simplified form of Hebb’s rule states that the 

change in a synaptic connection strength ωij is ∆ωij = δsisj 

where δ>0 is a fixed parameter controlling the learning rate 

and sn is the current activation of the n
th
 neuron. This learning 

rule has the effect of transforming correlated neural 

activations (created by an external stimulus) into causally 

linked neural activations. From a dynamical systems 

perspective, this has the effect of enlarging the basin of 

attraction for the current activation pattern/system 

configuration created by the stimulus. This type of learning 

can be used to train a recurrent neural network to store a given 

set of training patterns [15] thus forming what is known as an 

‘associative memory’ of these patterns. A network trained 

with an associative memory then has the ability to ‘recall’ the 

previously seen training pattern that is most similar to a new 

partially specified or corrupted test pattern. 

In this paper we investigate the possibility that a gene 

regulation network, capable in principle of exhibiting the 

same kind of dynamics as a recurrent neural network, is 

subject, over evolutionary timescales (not lifetimes [16]), to 

modifications in connections that are in principle the same as 

those produced by Hebbian learning familiar in neural 

network models. Thus genes that fire together wire together - 

i.e. genes whose expression is selected for in the same 

selective environments become co-regulated. Accordingly, the 

previously external cause of correlations in phenotypic 

characters (i.e. direct selection on expression patterns) 

becomes internalised (i.e. the result of a regulatory 

connection).  A developmental trajectory determined by such 

an evolved network will then be able to reproduce a 

previously selected phenotype ballistically from an arbitrary 

initial condition using purely internalised dynamics, i.e. using 

a memory of what phenotypic characters work well together. 

This analogy helps us to understand how a gene regulation 

network can modify the distribution of phenotypes in a 

manner that reflects structure in the selective environment. 

Specifically, we argue that evolved changes in regulatory 

connections will tend to cause the regulatory network as a 

whole to form an associative memory [15] of locally optimal 

phenotypes that have been visited in the past [17,18]. The 

evolved network has a dynamical behaviour which models the 

historical selective pressures on phenotypes (in the sense of 

having the same attractors) and can thereby create phenotypic 

distributions that are especially fit. In particular, an evolved 

network can produce a distribution of phenotypes that enables 

a population to escape locally optimal phenotypes (i.e. 

phenotypes that were locally optimal prior to the development 

of this regulation) in favour of superior optima. We also show 

that the proximal cause of these changes is not the teleological 

anticipation of future reward but something much more 

mundane – merely selection for robustness or canalisation of 

the current phenotype [5]. By analogy with the Baldwin effect 

[19], the internalised memory of previously found solutions 

enables previously evolved phenotypes to be produced 

innately by the developmental process. We therefore argue 

that selection for homeostasis on an immediate timescale (i.e. 

the ability to regulate a constant condition [20]), is the 

proximal cause of increased evolvability on larger timescales 

(i.e. increased ability for adaptation), as we will discuss. 

Self-modelling dynamical systems 

In related work [17,18] we have been developing the concept 

of a ‘self-modelling’ dynamical system – a complex adaptive 

system that creates a memory of its past dynamical behaviour. 

We have shown that if changes to connections are Hebbian 

and slow compared to the system’s state dynamics, a complex 

adaptive system will form an associative memory of its own 

dynamical attractors that enables it to lower its energy more 

efficiently and completely when subjected to repeated 

perturbation [17]. The ‘training patterns’ in such a scenario 

are the configuration patterns that are commonly experienced 

under the network’s intrinsic dynamics, hence ‘self-

modelling’ [18] – and if the system spends most of its time at 

locally optimal configurations, it is these configurations that 

the associative memory stores. From a neural network 

learning point of view, a network that forms a memory of its 

own attractors is a peculiar idea. Forming an associative 

memory means that a system forms attractors that represent 

particular patterns or state configurations. For a network to 

form an associative memory of its own attractors therefore 

seems redundant; it will be forming attractors that represent 

attractors that it already has. However, in forming an 

associative memory of its own attractors the system will 

nonetheless alter its attractors; it does not alter their positions 
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in state configuration space, but it does alter the size of their 

basins of attraction (i.e. the set of initial conditions that lead 

to a given attractor state via local energy minimisation). 

Specifically, the more often a particular state configuration is 

visited the more its basin of attraction will be enlarged and the 

more it will be visited in future, and so on. Because every 

initial condition is in exactly one basin of attraction it must be 

the case that some attractor basins are enlarged at the expense 

of others. Accordingly, attractors that have initially large 

basins of attraction will, with continued positive feedback, 

eventually out-compete all others until there is only one 

attractor remaining in the system.  

Variation in the selective targets/initial conditions 

 
Fig.1. a) Adaptation to two different targets from the same initial 

condition (I.C.), b) Adaptation to one multi-modal target from two 

different initial conditions. 

Before introducing our model, we briefly discuss an 

equivalence between multiple evolutionary episodes in 

different selective environments (Fig.1.a) and multiple 

evolutionary episodes from different initial conditions in a 

static (but multi-modal) selective environment (Fig.1.b). 

Parter et al, for example, conduct experiments using the 

former – and construct by hand different selective targets that 

are drawn from the same ‘language’ of tasks [8] (varying in a 

modular manner). We prefer the latter; using a single multi-

modal landscape (created by modular epistasis) with repeated 

radical ‘perturbations’ of the evolved solution causing it to 

visit different local optima. What matters for our purposes is 

only the similarity or differences of the multiple ‘targets’/ 

‘local optima’, and the latter method has the advantage that, 

when the landscape is produced from the superposition of 

many low-order epistatic interactions (see methods), it does 

not require such explicit hand-crafting in this respect since 

structural similarity in the local optima results naturally.  

A model for the concurrent evolution of gene 

expression patterns and regulation networks 

Overview. Our model is intended to be as simple as possible. 

Presumably, the evolution of a gene expression network that 

is capable of creating correlated gene expression patterns and 

potentially sophisticated dynamical attractors was preceded by 

the evolution of static (unregulated) gene expression patterns. 

Likewise, the evolution of robust cell types in single-celled 

organisms, and gene expression networks that (partially) 

determine those cell types, presumably preceded the evolution 

of multi-cellular development and programmed cell 

differentiation. Accordingly, our model addresses the 

evolution of a gene expression pattern, and subsequently a 

regulation network, in a single-celled organism. By 

‘phenotype’ we therefore simply mean a particular pattern 

gene expression, and by ‘development’ we simply mean the 

dynamical gene regulation process that creates the ‘adult’ 

gene expression pattern. 

The model is not intended to be a literal model of 

biological processes. The critical features include a 

continuous-valued state vector representing a pattern of gene 

expression and a matrix of positive and negative connections 

representing up- and down-regulating connections between 

genes. These are subject to random variation and a selective 

environment that favours particular gene expression 

correlations. These components are linked together in a 

manner representing the concurrent evolution of a gene 

expression pattern and a gene regulation network but we aim 

to keep this protocol as simple as possible (see Fig. 2). 

We assume that a pattern of gene expression is 

(epigenetically) inherited from one cell to the descendant cell 

and that a selection pressure on this phenotype causes it to 

evolve over many reproductions. A regulation network is also 

(genetically) inherited and subject to evolution via selection 

on the gene expression pattern that it modifies. We assume 

that every gene has the potential to regulate any other gene but 

that there is no significant regulation in the ancestral cell type 

(i.e. initially zero connections). Random variation in the 

connections of the network can introduce positive or negative 

correlations in the expression of genes which may or may not 

be beneficial given the current selective environment. So, in 

the lifetime of the cell, its initial gene expression pattern is 

inherited from the parent cell with random variation, this 

pattern of expression then forms the initial condition of the 

gene regulation network, which is then run for a number of 

time-steps (usually one) creating a slightly altered pattern of 

gene expression, and it is this pattern of expression which is 

interpreted as the phenotype of the organism and evaluated by 

the fitness function. 

Evolutionary adaptation. The idea of evolved 

correlations between the expression of one gene and that of 

another invokes the notion of a distribution of phenotypes. 

When there are many copies of each genotype in a population, 

each one producing a phenotype from this distribution, 

selection on these individual phenotypes implicitly selects for 

genotypes that produce high fitness phenotype distributions 

[10]. However, we find that an explicit population with 

multiple copies of a genotype is more complicated than 

necessary. It is sufficient to merely compare the phenotype of 

a mutant to the phenotype of the original type and retain 

whichever is fitter. Hence we model the evolutionary process 

with a simple random mutation hill-climber (or 

‘(1+1)ES’[21]) rather than a population-based evolutionary 

algorithm [3]. The latter merely adds additional stochastic 

fluctuations and unnecessary conceptual complications.  

The overall architecture of the evolutionary model is 

depicted in Fig. 2. and detailed in Fig.3. Note that the gene 

I.C. 1 and 2 

landscape 1 landscape 2 

a) 

                    I.C. 1                           I.C.2 b) 
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expression network does not so much represent a mapping 

from genotype to phenotype, as it is popularly conceived, so 

much as a mapping from an initial gene expression pattern to 

an ‘adult’ gene expression pattern. This adult gene expression 

pattern and the gene expression network is passed on the next 

generation (with random variation).  

  
Fig.2: Schematic overview of the inheritance, regulation and selection 

processes (i.e. an iteration of the evolutionary hill-climber). a) A cell 

contains both an expression pattern and a genetically specified gene 

regulation network. b) Its descendents include individuals that are i) 

identical to the parent, ii) have a perturbed expression pattern (black), iii) 

have both a perturbed expression pattern and a genetically mutated 

regulation network (here depicted by an additional connection). c) The 

pattern of gene expression in each of these descendent cells is 

‘developed’ or ‘run’ through their regulation networks creating three 

slightly different ‘adult’ gene expression patterns. d) The cell with the 

most fit gene expression pattern replaces the ancestral cell type. 

The gene regulation network, R, (Fig. 3) is a matrix of 

connection strengths initialised to 0. The expression pattern, 

E, is set to a random configuration each t*=5000 iterations 

(each gene expression level is set to a value drawn uniformly 

and independently in the range (-1,1)). This represents a 

radical environmental perturbation of the expression pattern 

and allows the expression pattern to visit the slopes of 

different local optima in the fitness landscape (Fig. 1) hence 

commencing a new evolutionary ‘episode’. E1, E2 and E3 are 

the three modified expression patterns that result from the 

three descendents of the ancestral type (having no mutations, 

mutation to the expression pattern only, and mutation to both 

the expression pattern and the regulation network, 

respectively. We assume that mutation to the regulation 

network without mutation to the regulation pattern is 

unlikely). mut is a mutation function that introduces a small 

perturbation to the expression pattern or a small mutation to 

the regulation network. Specifically one of the existing 

expression levels or connection strengths (selected at random) 

is modified by adding a value drawn uniformly in the range 

(-1,1). (In test cases where the regulation network is not 

evolved, lines 2.c and 2.g are omitted.) run(E,R) is a function 

that ‘develops’ the initial expression pattern E by running the 

regulation network R for p time steps (p=1 by default) and 

returns a new expression pattern. For each time step the new 

activation level, si(t+1), of gene, i, is calculated using the old 

value with a decay term and a sum of weighted (positive or 

negative) inputs from the other genes in the network, as 

follows [22]: 











−+=+ ∑ (t)s))((T(t)s1)(ts iii

N

j

jij tsw σ    (1) 

where T=0.001 is a time constant, wij is the connection from 

gene  j to gene i, σ(x)=tanh(x/10) is a sigmoidal output 

function determining the expression level of a gene with 

activation level x (representing the tendency of expression 

levels to saturate).   

1. initialise regulation network, R. 

2. t=0, repeat 

a. if (t=0) expression pattern, E=random, t=t*; 

b. E’=mut(E);  

c. R’=mut(R);  

d. E1=run(E, R); E2=run(E’, R); E3= run(E’,R’) 

e. m= max(f(E1),f(E2),f(E3)) 

f. if (f(E2)=m) E=E’; 

g. if (f(E3)=m) E=E’, R= R’; 

h. t=t-1 

Fig. 3. Pseudocode of the inheritance, regulation and selection processes 

depicted in Fig. 2.  

 The selective environment. The fitness landscape is 

(initially) carefully controlled so that we can assess easily 

whether an evolved regulation network is creating appropriate 

correlations in the gene expression pattern. The minimal 

conceivable scenario is one where there are only two genes 

with selection for correlated expression in these two genes 

[10]. If we do not have any intrinsic preference for absolute 

gene expression levels, only for correlations, this means that 

there will be two locally optimal gene expression patterns of 

equal fitness – ‘HH’ and ‘LL’ (representing ‘High’ or ‘Low’ 

expression levels for the first and second genes). 

Alternatively, if we select for anti-correlation then these will 

be ‘HL’ and ‘LH’. However, although we might be able to 

evolve a gene regulation network that supports correlation or 

anti-correlation in such a scenario, the evolutionary outcome 

will be somewhat degenerate in the sense that each of the two 

locally optimal gene expression patterns will have equal 

fitness and be equally likely to arise (from a random initial 

condition) without a regulation network.  

 Accordingly, we will examine the next simplest case; a 

system of four genes in two pairs. Here we can define a 

fitness function where ‘HHHH’ and ‘LLLL’ are maximally 

fit, but where ‘HHLL’ and ‘LLHH’ are local optima of lower 

fitness. Favouring pairs of co-expressed genes in this manner 

thus enables us to define a system with different-fitness 

optima without introducing a preference for absolute 

expression levels, or any asymmetries that would make one 

gene more important than any other. It also represents a 

minimally ‘modular’ fitness function. Naturally, we do not 

imagine that such a fitness landscape represents any realistic 

biological scenario – its structure is chosen merely to avoid 

obfuscating the significance of an evolved regulation network 

d) 

a) 

b) 

c) 

i 
ii 

iii 
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with a complex adaptive landscape, and to test whether a 

network can create correlations that support co-regulation and 

create high-fitness phenotypes (we later investigate evolution 

on a 30-variable randomised landscape). 

 We construct a fitness function of this type using a sum of 

low-order (pair-wise) epistatic interactions [23] creating a 

locally smooth (but multi-modal) fitness landscape. 

Specifically, the fitness of an expression pattern, 

S=<s1,s2…sN>, is given by:   

∑∑=
N

i

N

j

jiij sseS )()()(f σσ            (2) 

where N is the number of genes in the system, si is the 

activation of the i
th
 gene, eij is the epistatic interaction between 

genes i and j, defined below and σ(s)=tanh(s/10) is the 

expression level of the gene, as before. The epistatic matrix is 

as follows: e12=e34=1, e13=e14=e23=e24=0.1, else eij=0 – thus 

defining the two pairs of strongly interacting genes (s1/s2 and 

s3/s4), with only weak interactions between these pairs as 

discussed above.  

Results 

Evolution of expression patterns without evolved 

regulation. Fig. 4 (right) illustrates the evolution of an 

expression pattern (without evolved regulation) over 10
5
 

evolutionary time steps (therefore showing 20 evolutionary 

episodes between radical perturbations of the expression 

pattern). This clearly shows the four locally optimal 

expression patterns (HHHH, HHLL, LLHH, and LLLL) and 

that patterns where the four genes are all high or all low have 

the highest fitness. The fitness values at each of the 

evolutionary local maxima attained (i.e. at each t=1 time step) 

may be either in the lower class or the higher class (see Fig. 

4). The proportion of high and low fitness optima found 

indicates the size of the evolutionary basin of attraction for 

each class of optima. For these parameters under these 

conditions (without a regulation network) we find that the 

evolutionary basin of attraction for the fitter local optima 

accounts for about 73% of the initial configuration space 

(averaged over 300 evolutionary episodes). 

Evolved regulation. Under natural selection, evolved changes 

to the connections in the regulation network must be those 

that change the expression pattern in the direction that 

increases fitness; and that direction may be different 

depending on the currently selected expression pattern. Since 

the evolved expression pattern very quickly settles into one 

attractor or the other, most evolution of the regulation 

network will occur when the expression pattern is at or near a 

locally optimal configuration. So, as a first step to 

investigating the evolution of a regulation network we evolve 

the regulation network when the expression pattern is 

‘clamped’ at a single locally optimal configuration. 

Specifically, in line 2.a of Fig.3, E is set to <s,s,s,s> (s=5) 

instead of a random configuration. We find that after 100,000 

more evolutionary steps the evolved connections in the 

regulation network are all positive (Table 1). In contrast, when 

the clamped expression pattern is HHLL (E= <s,s,-s,-s>), the 

evolved connections are positive on the block diagonal 

(shaded) and negative elsewhere (Table 2). 

It is crucial to note that the signs of these connections do 

not directly reflect the epistatic interactions in the fitness 

landscape – the intrinsic epistasis in the landscape does not 

change between the HHHH and HHLL test cases. Rather the 

evolved connections reflect the expression states experienced 

when the regulatory connection is altered (i.e. si=H/sj=H and 

si=L/sj=L expression levels create selection for positive 

connections, whereas si=H/sj=L and si=L/sj=H expression 

levels evolve negative connections). This clearly follows 

Hebbian principles – when equal gene expression levels are 

selected together they wire together positively, when one is 

selected to be high and the other low, they wire together 

negatively. 

However, the sign of the connection is really just a 

labelling convention – what really matters with respect to 

demonstrating Hebbian learning is that these evolved 

connections increase the basin of attraction for the current 

expression pattern. Fig. 5 shows, for example, the effect of the 

connections evolved at the HHLL expression pattern (i.e. 

Table 2). We see that the evolved connections change the size 

of the HHLL attractor basin to fill 100% of the configuration 

space (conversely, when regulation is evolved at the HHHH 

expression pattern, Table 1, this pattern comes to occupy 

100% of the configuration space).
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Fig.4. left) Evolution of a gene expression pattern without regulation for one evolutionary episode (5000 time steps). This happens to arrive at the locally 

optimal expression pattern where genes 1 & 2 are low, and 3 & 4 are high. Right) A longer run (100,000 time steps) including 20 evolutionary episodes, 

again without evolved regulation. Note that with these parameters, each evolutionary episode very quickly reaches a locally optimal expression pattern (i.e. 

transients are short). Note that fitnesses at evolutionary attractors fall into two classes (roughly those below a fitness of 2 and those above). 
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i/j 1=H 2=H 3=H 4=H 
1=H 89.13 160.18 126.02 104.35 
2=H 120.42 58.95 87.40 152.94 
3=H 163.49 76.60 152.08 79.10 
4=H 197.69 56.58 158.36 159.87 

Table 1: evolved connections when the expression pattern is HHHH. 

i/j 1=H 2=H 3=L 4=L 
1=H 80.93 105.81 -60.99 -146.92 
2=H 153.02 120.27 -94.84 -108.03 
3=L -157.65 -125.27 69.33 163.97 
4=L -156.00 -140.19 84.13 69.17 

Table 2: evolved connections when the expression pattern is HHLL. 
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Fig. 5. Number of evolutionary episodes (from 20) finding each locally 

optimal phenotype before and after evolution of the regulation network. 

When the gene expression pattern is held at a low fitness attractor, the 

evolved regulation network canalises this pattern. 
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Fig. 6. When the gene expression pattern is evolved freely, evolved 

regulation canalises the fitter pattern (since it is visited more often). 

Upper) The evolution of a gene expression pattern without evolvable 

regulation (episodes 1-50) and with evolvable regulation (episodes 51-

100). Each point represents a locally optimal expression pattern found via 

a single evolutionary episode from a random initial condition. Lower) see 

Fig.5.  

i/j 1 2 3 4 
1 437.37 566.40 60.50 72.32 
2 269.72 389.88 253.21 212.56 
3 184.52 98.54 270.58 351.04 
4 448.46 -25.23 373.18 246.46 

Table 3: Evolved regulatory connections when the expression pattern 

is not clamped. Although there is a lot of variation, the average value in 

the block diagonal (shaded) is 363 and elsewhere 163. The generally 

positive values mean that both the superior HHHH/LLLL attractor (Table 

1) and the inferior HHLL/LLHH attractor (Table 2) have been reinforced, 

but the lower values off the diagonal retain a reflection of the underlying 

modularity. 

Note that the evolved regulation network does not necessarily 

increase the basin of attraction for the fitter phenotypes, but 

rather for the phenotype present at the time that changes to the 

regulation network were evolved. Next, we evolve the 

regulation network without clamping the expression pattern. 

Without regulation the fitter phenotype is already found 73% 

of the time, so if the evolved regulation network reinforces the 

fitter attractor 73% of the time and the less fit attractor only 

27% of the time then on average the fitter attractor should be 

enlarged more often than the less fit attractor in a positive 

feedback manner and it will eventually outcompete it (Fig. 6, 

Table 3).  

Collectively, these results demonstrate that selection 

favours changes to regulation connections that reflect co-

expression in the current phenotype, and that these 

connections increase the basin of attraction for that expression 

pattern, as expected for Hebbian changes to connections. They 

also show that in a fitness landscape where fitter patterns have 

larger basins (as is necessarily the case when the fitness 

landscape is created from the superposition of many low order 

interactions [18,24,25]) enlargement of these fitter basins will 

outcompete lower fitness basins and create a regulation 

network that produces fit phenotypes more reliably. Although 

this result is somewhat underwhelming in this almost trivial 

(two attractor) system, in addition to the basic Hebbian 

principles, it also illustrates a further vital point. Specifically, 

the fact that the basin of attraction for the superior phenotypes 

is now almost 100% means that there are some initial 

conditions that used to lead natural selection of expression 

patterns to find the inferior phenotype but now evolution of 

expression patterns from these same initial conditions leads to 

the superior phenotype. That is, random variation in the 

expression pattern that would increase fitness by moving 

toward the inferior phenotype is being suppressed by the 

regulation network, and variation that moves the expression 

pattern toward the superior phenotype is being supported. 

This means that given the evolved regulation network, the 

evolutionary trajectory of the expression pattern is able to 

‘climb out’ of the basin of attraction for the inferior 

phenotype and secure adaptation in the direction of the 

superior phenotype. Evolution of regulation that avoids sub-

optimal phenotypes in a larger system is shown in Fig.71.  

Ballistic development. Thus far the developmental 

network is only run for one time step (p=1) per application of 

natural selection. This is sufficient to induce significant 

correlations and redirect the evolutionary trajectory of 

expression patterns, as we have shown. But in general one 

might expect a regulation network to ‘develop’ an initial 

expression pattern into a fit adult expression pattern for many 

time steps without the need for selection to act on the result of 

every intermediate step. We therefore examine a ‘ballistic’ 

developmental trajectory (i.e. run(E,R) with p=5000, rather 

                                                             
1

Here fitnesses are measured on thresholded expression values (>0→1, 

<0→-1) to ensure that an increase in fitness is the result of increasing the 

basin of attraction for a fit configuration pattern and not merely the result 

of increasing the magnitude of the expression levels (see measuring 

energy with the original weights rather than the learned weights [18]). 
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than 5000 iterations of the evolutionary cycle with p=1) using 

the regulation network evolved in Fig.7, applied to an initially 

random expression pattern. We find that even though 

selection is not being applied the fitness of the phenotype 

increases monotonically at each developmental step, and in 

fact the phenotypic attractor that is reached by this ballistic 

developmental process is the same attractor that is reached 

when selection was applied (Fig. 8). Thus selection on 

intermediate phenotypes (and epigenetic inheritance) has 

become redundant because development can now ‘recall’ the 

result of, or recapitulate, what was previously an entire 

evolutionary episode from any initial condition. Analogy with 

the Baldwin effect, where phenotypes that were previously 

acquired by lifetime learning are latterly exhibited innately 

[19], is provocative. 
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Fig. 7. As per Fig. 6 for a system of 30 genes with random epistasis in the 

fitness function (Eq.2 with each eij drawn randomly (-1,1)). The basin of 

attraction for the highest fitness optima is initially only 9.5%, meaning 

that 90.5% of episodes get stuck at some other sub-optimal phenotype. 

After the regulation network is evolved all of these inferior phenotypes 

are reliably evaded regardless of the initial gene expression pattern. 
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Fig. 8. 200 steps of an evolutionary episode with the evolved regulation 

network (upper) are accurately mimicked by ballistic (unselected) multi-

step development using the same network (lower).  

Discussion 

Distal ‘explanation’? On the one hand, the result of Fig. 7 is 

just what one might expect – selection favours fit phenotypes 

and if there are regulation networks that produce fit 

phenotypes reliably then they will be selected for. But this 

distal reasoning is misleading and obscures the proximal 

mechanism by which this result is produced. Note that a 

regulation network can preclude fit phenotypes just as easily, 

if not more so, than it might support them – it has ‘masking’ 

as well as ‘guiding’ possibilities [26] – and the evolution of a 

useful regulation network must not be taken for granted. 

The point we illustrate in the initial results (Tables 1 & 2, 

Fig. 5) is that the evolved regulation network is not favouring 

fit phenotypes in a direct sense, it is merely canalising the 

current phenotype. This is not an obvious route to finding fit 

regulation networks and one might expect that, at best, it will 

ultimately result in canalising an average-fitness phenotype, 

not the fittest phenotype. But when the distribution of 

phenotypes visited over many evolutionary episodes has some 

correlations (or anti-correlations) that occur more frequently 

than others, it is these correlations that are ultimately 

reinforced by the regulation network (Fig. 6). If these 

correlations appropriately reflect the epistatic structure in the 

fitness landscape then they can enhance evolvability. In this 

manner the regulation network comes to represent the 

structure of the epistasis (or more exactly, the structure of the 

correlations between phenotypic characters produced by the 

epistasis) in the selective history over which the regulation 

network was evolved. But by the same reasoning, when the 

correlations in characters in the phenotypes visited do not 

reflect the epistatic structure of the fitness landscape in 

general, and instead reflect arbitrary phenotypic correlations, 

the regulation network will evolve to represent correlations 

that are not of especially high fitness. We demonstrate this by 

increasing the mutation rate on the regulation network, and/or 

increasing the duration of each evolutionary episode, such that 

the evolutionary history does not visit a representative sample 

of phenotypic attractors before the regulation network fixes on 

a particular attractor. On average this causes the regulation 

network to fix a phenotype with an average fitness rather than 

the highest fitness. Accordingly, it is not to be taken for 

granted that a gene regulation network will evolve to enhance 

high-fitness phenotypes just because such a network exists in 

the space of possible networks. 

Proximal explanation. We should therefore investigate the 

proximal selection pressures involved in the initial result of 

Tables 2 & 3 (i.e. these data show that the selected changes to 

regulation connections are Hebbian but they do not explain 

why). Why is it that connections that reinforce the current 

phenotype are evolved instead of, say, connections that 

enlarge the basin of attraction for the fittest possible 

phenotype? (And how does this ultimately result in fit 

phenotypes?) To probe this issue we must consider the 

immediate selective gradients in the vicinity of the current 

phenotype. Specifically, for a change to a regulation 

connection to confer a selective advantage it must change the 

configuration of expression levels in a manner that increases 

fitness. However, most of the time, the current phenotype is a 

locally optimal configuration of gene expression levels. Thus, 

it might seem that the only way for a change to a connection 

to confer a fitness advantage would be when such a change 

moves the current phenotype out of the current local optimum 

and into a better one in a single mutation. But such a 

possibility is highly unlikely when the nearest phenotype of 

higher fitness is not an immediate neighbour.  
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In fact, something much more subtle is at work. Although 

most of the time the phenotype is almost locally optimal it is 

in fact constantly perturbed by the small environmental 

perturbations (line 2.b in Fig. 3). Changes to the regulation 

network can therefore be favoured by selection if they have 

the effect of returning the phenotype to the local optimum 

more quickly or more completely after this minor 

perturbation. In other words, we argue that changes to the 

regulation network are selected for merely because they make 

the current (almost locally optimal) phenotype more robust or 

more homeostatic. We test this hypothesis by removing line 

2.a., the small environmental perturbations, and repeating the 

experiment shown in Table 2. In this case we find that there 

are no changes to the regulation network that are selected, in 

fact all changes are either neutral or deleterious. Thus the 

small environmental perturbations serve a dual role – they 

first provide (unregulated) phenotypic variation that selection 

can act on to find locally optimal phenotypes, but they also 

create instability in these phenotypes creating a selective 

gradient that favours a regulation network that canalises these 

phenotypes. We argue that this dual role of variation is not 

special to this particular model but will necessarily occur 

whenever random variation, necessary for evolution to act at 

all, is present. 

From proximal causes to distal consequences. This 

proximal mechanism is also not very surprising given what 

one might expect from natural selection – if natural selection 

can act on the distribution of phenotypes in such a way as to 

narrow that distribution onto the fitter phenotypes, then a 

regulation network, for example, that provides such an 

outcome will be selected for. But canalisation – a reduction in 

the distribution of phenotypic characters – seems opposed to 

concepts of evolvability and increases in adaptability. 

However, a selection pressure for robustness can result in 

increased adaptability – in essence evolvability is the 

complement of canalisation [5]. The basic conceptual link is 

that restricting variation in phenotypic characters that are 

detrimental, whilst permitting continued variation in 

characters that have the potential to be beneficial, enhances 

adaptation rather than restricts it. But it is crucial to realise 

that in the current model the canalisation provided by the 

regulation network does not merely restrict variation in some 

characters but rather it reduces the degrees of freedom in the 

correlation of phenotypic characters [4]. 

In contrast, note that in Hinton and Nowlan’s model [19] 

for example, canalisation acts to reduce the variation in each 

phene independently. This therefore cannot act like an 

associative memory – it is not a memory of what things have 

co-occurred (i.e. have been selected together in the same 

environments) only of what things have occurred (been 

selected). The fact that the memory in our evolved regulation 

networks is associative is evidenced by the fact that variation 

in all phenes is still possible (when the network canalises the 

fitter attractor it actually canalises both HHHH and LLLL). 

This is crucial because if no further variation in phenotypic 

characters was possible we would conclude that canalisation 

had precluded further adaptation, but when canalisation 

creates correlations in phenotypic variation it is plausible to 

interpret this as smarter adaptation, i.e. a more evolvable 

genotype, rather than an unevolvable genotype. This is really a 

matter of perspective however, since both types of 

canalisation (associative and non-associative) necessarily 

reduce the space of phenotypic possibilities. 

Limitations and further work 

Our gene expression network uses signed expression levels to 

facilitate straightforward comparison with Hebb’s rule, but 

negative expression levels are biologically unnatural. We have 

also hinted at the sensitivity of the results to the timescales of 

evolutionary changes to expression patterns and to the 

regulation network, and to the period of the perturbations/ 

evolutionary episodes, but we have not yet examined this 

sensitivity carefully. 

 In related work we are interested in the question of whether 

individual agents in a complex adaptive system that can alter 

the strength of connections with one another will tend to do so 

in a Hebbian manner [17,27,28]. In this paper we have shown 

that selection on a network as a whole produces Hebbian 

changes to connections, but we suspect that the same effect 

occurs if each gene in the network is evolved independently. 

This hints at an explanation for how a network of ‘selfish’ 

genes can coordinate with one another in a manner that 

creates fit phenotypes despite being selected as individuals in 

sexual organisms. This then parallels work we are developing 

in the context of co-evolving species in an ecosystem where 

species may evolve the coefficients of a Lotka-Volterra 

system [27] or evolve symbiotic relationships [29], and 

connects with ‘social niche construction’ concepts [30]. 

The fact that natural selection is involved in this model 

should not to be mistaken for evidence of how ‘clever’ natural 

selection is. On the contrary, we have shown that given an 

appropriate (i.e. association-based) representation, a hill-

climber can produce these results. Moreover, the proximal 

cause of these results is that selection is decreasing variability 

which is something that hardly warrants natural selection at all 

[17,18,31]. We think it more fruitful to ascribe the 

‘cleverness’ of the result to the ability of an appropriate 

substrate to ‘yield’ or ‘relax’ to structured perturbation in a 

manner that reduces or dampens the effects of such 

perturbations [31]. This is supported by the observation that 

Hebbian changes to connections are equivalent to changes in 

connections that reduce the energy of a system [17].  

Conclusions 

Wagner et al [10] suggest that phenotypic correlations will 

evolve in a manner we recognise as Hebbian. Our 

conclusions, originating from separate motivations [11,17], 

agree but differ in emphasis – whereas Wagner et al address 

the rate of adaptation created by a correlated phenotypic 

distribution we emphasise the robustness or stability of a 

phenotype under environmental perturbation. But the 

mechanisms are deeply related because resilience is just 

another way to say that a phenotype ‘re-adapts’ quickly. All of 

the other results we have shown – the enlargement of the 

basin of attraction for the current phenotype, the ability to 

‘recall’ fit phenotypes that have been selected for in the past, 
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and the ability for a developmental trajectory to recapitulate 

what was previously an evolutionary trajectory – follow from 

this basic observation and dynamics that are already well-

understood in neural networks. This theoretical framework 

helps us to better understand the relationship between 

homeostasis and evolvability (i.e. selection to differentially 

reduce variability facilitates structured variability), and shows 

that, in principle, a gene regulation network has the potential 

to exhibit ‘recall’ capabilities normally considered to be the 

exclusive purview of cognitive systems.  
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